-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Peak_element.cpp
136 lines (121 loc) · 2.64 KB
/
Peak_element.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/**An array element is a peak if it is NOT smaller than
its neighbours. For corner elements, we need to
consider only one neighbour.
Since an array always have a maximum value therefore an peak element always be there and there can be many peak element.
Approach :If the middle element is not the peak element, then check if the element on the right side is greater than the middle element
then there is always a peak element on the right side.
If the element on the left side is greater than the middle element then there is always a peak element on the left side.
**/
#include <bits/stdc++.h>
using namespace std;
// recursive approach
int find_peak_recursive(vector<int> v, int l, int r)
{
if (l < r)
{
int mid = l + (r - l) / 2;
// for corner cases
if (mid == 0 || mid + 1 == v.size())
{
if (mid == 0)
{
if (v[0] >= v[1])
return v[0];
else
return v[1];
}
else
{
if (v[mid] >= v[mid - 1])
return v[mid];
else
return v[mid - 1];
}
}
else if (v[mid] >= v[mid - 1] && v[mid] >= v[mid + 1])
return v[mid];
else if (v[mid] < v[mid + 1])
return find_peak_recursive(v, mid + 1, r);
else
return find_peak_recursive(v, l, r - 1);
}
return -1;
}
// using while loop approach
int find_peak_iter(vector<int> arr)
{
int start = 0, n = arr.size();
int end = n - 1;
while (start <= end)
{
int mid = start + (end - start) / 2;
if (mid - 1 >= 0 && mid + 1 < n)
{
if (arr[mid] > arr[mid - 1] && arr[mid] > arr[mid + 1])
{
return arr[mid];
}
else if (arr[mid] < arr[mid - 1])
{
end = mid - 1;
}
else
{
start = mid + 1;
}
}
// for corner cases
else if (mid == 0)
{
if (arr[0] > arr[1])
{
return arr[0];
}
else
{
return arr[1];
}
}
// for corner cases
else if (mid == n - 1)
{
if (arr[n - 1] > arr[n - 2])
{
return arr[n - 1];
}
else
{
return arr[n - 2];
}
}
}
return -1;
}
int main()
{
int n;
cout << "Enter the number of elements in the array : ";
cin >> n;
vector<int> v(n);
cout << "\nEnter the elements of the array : \n";
for (int i = 0; i < n; i++)
{
cin >> v[i];
}
int peak_recursive = find_peak_recursive(v, 0, n - 1);
cout << "Peak element (Recursive approach) : " << peak_recursive << "\n";
int peak_iter = find_peak_iter(v);
cout << "Peak element (Iterative approach) : " << peak_iter << "\n";
return 0;
}
/**
Eg. :
Input:
Enter the number of elements in the array : 7
Enter the elements of the array : 10 20 15 2 23 90 67
Output:
Peak element (Recursive approach) : 90
Peak element (Iterative approach) : 20
Time Complexity : O(log(N))
Space Complexity : O(N)
**/