-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathNQueens.cpp
71 lines (59 loc) · 1.63 KB
/
NQueens.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/**
N-Queens problem is a famous problem
The paradigm used to solve the problem is backtracking
The problem is to find a way to place n queens on nXn board
such that no queen can kill the other
**/
#include <bits/stdc++.h>
using namespace std;
#define N 20
void solve(bool board[N][N], bool cols[N], bool ndiag[2*N-1], bool rdiag[2*N-1], int row, string asf, int n) {
if(row == n) {
cout << asf << '.' << '\n';
return;
}
for(int col=0; col<n; col++) {
if(cols[col] == false && ndiag[row+col] == false &&
rdiag[row-col+n-1] == false) {
// place the queen
cols[col] = true;
ndiag[row+col] = true;
rdiag[row-col+n-1] = true;
board[row][col] = true;
solve(board, cols, ndiag, rdiag, row+1, asf+to_string(row)+"-"+to_string(col)+", ", n);
// backtrack
cols[col] = false;
ndiag[row+col] = false;
rdiag[row-col+n-1] = false;
board[row][col] = false;
}
}
}
int main() {
int n;
cin >> n;
bool board[N][N];
bool cols[N];
bool ndiag[2*N-1], rdiag[2*N-1];
// initialize
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
board[i][j] = false;
// initialize that no column has a queen
for(int i = 0; i < n; i++)
cols[i] = false;
for(int i = 0; i < 2*n-1; i++) {
ndiag[i] = false;
rdiag[i] = false;
}
solve(board, cols, ndiag, rdiag, 0, "", n);
}
/**
Input :
4
Output :
0-1, 1-3, 2-0, 3-2, .
0-2, 1-0, 2-3, 3-1, .
Space Complexity : O(n^2)
Time Complexity : upperbounded by O(n^n)
**/