Skip to content

Commit

Permalink
Fix issue TheAlgorithms#12108: Added Ridge Regression to Machine Lear…
Browse files Browse the repository at this point in the history
…ning
  • Loading branch information
Harmanaya committed Oct 22, 2024
1 parent 6e24935 commit 2293d37
Showing 1 changed file with 108 additions and 0 deletions.
108 changes: 108 additions & 0 deletions machine_learning/ridge_regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
import numpy as np
import pandas as pd


class RidgeRegression:
def __init__(self, alpha=0.001, lambda_=0.1, iterations=1000):
"""
Ridge Regression Constructor
:param alpha: Learning rate for gradient descent
:param lambda_: Regularization parameter (L2 regularization)
:param iterations: Number of iterations for gradient descent
"""
self.alpha = alpha
self.lambda_ = lambda_
self.iterations = iterations
self.theta = None

def feature_scaling(self, X):
"""
Normalize features to have mean 0 and standard deviation 1
:param X: Input features, shape (m, n)
:return: Scaled features, mean, and std for each feature
"""
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)

# Avoid division by zero for constant features (std = 0)
std[std == 0] = 1 # Set std=1 for constant features to avoid NaN

X_scaled = (X - mean) / std
return X_scaled, mean, std

def fit(self, X, y):
"""
Fit the Ridge Regression model to the training data
:param X: Input features, shape (m, n)
:param y: Target values, shape (m,)
"""
X_scaled, mean, std = self.feature_scaling(X) # Normalize features
m, n = X_scaled.shape
self.theta = np.zeros(n) # Initialize weights to zeros

for i in range(self.iterations):
predictions = X_scaled.dot(self.theta)
error = predictions - y

# Compute gradient with L2 regularization
gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m
self.theta -= self.alpha * gradient # Update weights

def predict(self, X):
"""
Predict values using the trained model
:param X: Input features, shape (m, n)
:return: Predicted values, shape (m,)
"""
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
return X_scaled.dot(self.theta)

def compute_cost(self, X, y):
"""
Compute the cost function with regularization
:param X: Input features, shape (m, n)
:param y: Target values, shape (m,)
:return: Computed cost
"""
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
m = len(y)
predictions = X_scaled.dot(self.theta)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
self.lambda_ / (2 * m)
) * np.sum(self.theta**2)
return cost

def mean_absolute_error(self, y_true, y_pred):
"""
Compute Mean Absolute Error (MAE) between true and predicted values
:param y_true: Actual target values, shape (m,)
:param y_pred: Predicted target values, shape (m,)
:return: MAE
"""
return np.mean(np.abs(y_true - y_pred))


# Example usage
if __name__ == "__main__":
# Load dataset
df = pd.read_csv(
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
)
X = df[["Rating"]].values # Feature: Rating
y = df["ADR"].values # Target: ADR
y = (y - np.mean(y)) / np.std(y)

# Add bias term (intercept) to the feature matrix
X = np.c_[np.ones(X.shape[0]), X] # Add intercept term

# Initialize and train the Ridge Regression model
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
model.fit(X, y)

# Predictions
predictions = model.predict(X)

# Results
print("Optimized Weights:", model.theta)
print("Cost:", model.compute_cost(X, y))
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))

0 comments on commit 2293d37

Please sign in to comment.