-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
126 lines (97 loc) · 4.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# !/usr/bin/env python3
"""
旋转图片角度计算器。
Author: pankeyu
Date: 2022/05/17
"""
import os
import torch
import torch.nn as nn
from torchvision import models
import torch.nn.functional as F
import torch.optim as optim
from utils import get_filenames
from ImageDataset import RotateImageDataset
from iTrainingLogger import iSummaryWriter
batch_size = 32
n_epoch = 50
input_shape = (3, 244, 244)
log_interval = 5000
eval_interval = 10000
writer = iSummaryWriter(log_path='.', log_name='Rotate Net Training Log')
data_path = os.path.join('/Volumes/Samsung_T5/datasets/训练数据集/', 'street_view')
train_filenames, test_filenames = get_filenames(data_path)
train_dataset = RotateImageDataset(input=train_filenames, input_shape=input_shape, normalize=True)
test_dataset = RotateImageDataset(input=test_filenames, input_shape=input_shape, normalize=True)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
class RotateNet(nn.Module):
def __init__(self):
super().__init__()
self.model = models.resnet50(pretrained=True)
self.model.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.output = nn.Linear(2048, 360) # 360度,一度一个分类
def forward(self, x):
"""
前向传播, 使用resnet 50作为backbone, 后面接一个线性层。
Args:
x (_type_): (batch, 3, 224, 224)
Returns:
_type_: 360维的一个tensor, 表征属于每一个角度类别的概率
"""
x = self.model.conv1(x) # (batch, 64, 122, 122)
x = self.model.bn1(x) # (batch, 64, 122, 122)
x = self.model.relu(x) # (batch, 64, 122, 122)
x = self.model.maxpool(x) # (batch, 64, 61, 61)
x = self.model.layer1(x) # (batch, 256, 61, 61)
x = self.model.layer2(x) # (batch, 512, 31, 31)
x = self.model.layer3(x) # (batch, 1024, 16, 16)
x = self.model.layer4(x) # (batch, 2048, 8, 8)
x = self.model.avgpool(x) # (batch, 2048, 1, 1)
x = x.view(x.size(0), x.size(1)) # (batch, 2048)
x = self.output(x) # (batch, 360)
return x
model = RotateNet()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
criterion = nn.CrossEntropyLoss()
def train():
"""
训练分类器。
"""
for i in range(n_epoch):
for batch_idx, (imgs, targets) in enumerate(train_dataloader):
imgs, targets = torch.tensor(imgs, dtype=torch.float32), torch.tensor(targets, dtype=torch.long) # imgs (batch, 244, 3, 3), targets (64, )
logits = model(imgs)
logits = F.softmax(logits, dim=-1)
optimizer.zero_grad()
loss = criterion(logits, targets)
loss.backward()
optimizer.step()
current_steps = i * len(train_dataloader) + batch_idx * batch_size
if current_steps % log_interval == 0:
writer.add_scalar('train_loss', loss.item(), current_steps)
writer.record()
if current_steps % eval_interval == 0:
evaluate(current_steps)
def evaluate(current_steps: int):
"""
测试训练器的效果。
Args:
current_steps (int): _description_
"""
with torch.no_grad():
test_loss, correct = 0, 0
for imgs, targets in test_dataloader:
imgs, targets = torch.tensor(imgs, dtype=torch.float32), torch.tensor(targets, dtype=torch.long)
logits = model(imgs)
test_loss += criterion(logits, targets)
pred = logits.data.max(1, keepdim=True)[1]
correct += pred.eq(targets.data.view_as(pred)).cpu().sum()
test_loss /= len(test_dataloader.dataset)
writer.add_scalar('eval_loss', test_loss.cpu().item(), current_steps)
writer.add_scalar('eval_acc', 100. * correct / len(test_dataloader.dataset), current_steps)
writer.record()
print('Eval Acc: {:.2f}%'.format(100. * correct / len(test_dataloader.dataset)))
torch.save(model, 'models/model_{:.2f}.pth'.format(correct / len(test_dataloader.dataset)))
if __name__ == '__main__':
train()