This repository has been archived by the owner on Apr 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathHealthyNodes.py
87 lines (72 loc) · 3.07 KB
/
HealthyNodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# -*- coding: utf-8 -*-
#
# Copyright 2015 Institut für Experimentelle Kernphysik - Karlsruher Institut für Technologie
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hf
from sqlalchemy import TEXT, INT, FLOAT, Column
import numpy as np
import htcondor
class HealthyNodes(hf.module.ModuleBase):
config_keys = {
'source_url': ('Not used, but filled to avoid warnings', 'www.google.com'),
'warning_threshold': ('Upper threshold for the number of corrupt nodes above the status is on warning.', '3'),
'critical_threshold': ('Upper threshold for the number of corrupt nodes above the status is critical.', '5')
}
table_columns = [], []
subtable_columns = {
'statistics' : ([
Column('machine', TEXT),
Column('message', TEXT)], [])
}
def prepareAcquisition(self):
# Setting defaults
self.source_url = self.config["source_url"]
# Define basic structures
self.condor_projection = [
'NODE_IS_HEALTHY',
'Machine'
]
# Prepare htcondor queries
self.collector = htcondor.Collector()
self.requirement = '( CLOUDSITE=="condocker" || CLOUDSITE=="ekpsupermachines" ) && SlotTypeID == 1 && NODE_IS_HEALTHY =!= undefined'
# Prepare subtable list for database
self.statistics_db_value_list = []
def extractData(self):
data = {}
result = self.collector.query(htcondor.AdTypes.Startd, self.requirement, self.condor_projection)
for node in result:
node_dict = {}
if node['NODE_IS_HEALTHY'] == True:
pass
else:
node_dict['message'] = node['NODE_IS_HEALTHY']
node_dict['machine'] = node['Machine']
# Save only filled dictionaries.
if node_dict:
self.statistics_db_value_list.append(node_dict)
if len(self.statistics_db_value_list) <= int(self.config['warning_threshold']):
data["status"] = 1.
elif len(self.statistics_db_value_list) <= int(self.config['critical_threshold']):
data["status"] = 0.5
else:
data["status"] = 0.
return data
def fillSubtables(self, parent_id):
self.subtables['statistics'].insert().execute([dict(parent_id=parent_id, **row) for row in self.statistics_db_value_list])
def getTemplateData(self):
data = hf.module.ModuleBase.getTemplateData(self)
statistics_list = self.subtables['statistics'].select().\
where(self.subtables['statistics'].c.parent_id == self.dataset['id']).execute().fetchall()
data['statistics'] = map(dict, statistics_list)
return data