-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparallel_trainer.py
158 lines (133 loc) · 7.17 KB
/
parallel_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import yaml
import subprocess
import time
import random
import argparse
import os
import sys
class ParallelTrainer:
def __init__(self, yaml_path):
self.config = self.load_yaml(yaml_path)
self.processes = {} # Store {gpu_id: process} for monitoring
@staticmethod
def load_yaml(yaml_path):
with open(yaml_path, 'r') as file:
return yaml.safe_load(file)
def get_available_gpus(self):
cmd = "nvidia-smi --query-gpu=index,memory.used --format=csv,noheader,nounits"
output = subprocess.check_output(cmd, shell=True).decode('utf-8').strip()
lines = output.split("\n")
# Extract GPUs with memory usage less than a certain threshold (e.g., 500 MB)
free_gpus = [int(line.split(",")[0].strip()) for line in lines if
int(line.split(",")[1].strip().split(" ")[0]) < 800]
# If 'device' is specified in the config, filter the available GPUs
if 'device' in self.config:
specified_gpus_str = self.config['device']
specified_gpus = [int(gpu) for gpu in specified_gpus_str.split(',')]
free_gpus = [gpu for gpu in free_gpus if gpu in specified_gpus]
return free_gpus
def run_task(self, task_args, gpu):
python_executable = sys.executable # This will give the path to the currently running Python interpreter
# base_args = [python_executable, self.config['file']]
base_args = [self.config['file']]
# Load all non-task parameters excluding 'name' and 'file'
for key, value in self.config.items():
if 'task' not in key and key not in ['name', 'file', 'device']:
if isinstance(value, bool):
if value: # If the value is True, we just add the flag, otherwise we skip it
base_args.append(f'--{key}')
elif isinstance(value, list):
base_args.append(f'--{key}')
for item in value:
base_args.append(str(item))
else:
base_args.extend([f'--{key}', str(value)])
for key, value in task_args.items():
if isinstance(value, list):
base_args.append(f'--{key}')
for item in value:
base_args.append(str(item))
else:
base_args.extend([f'--{key}', str(value)])
# base_args.extend([f'--{key}', str(value)])
log_path = f"{self.config['model']}_{self.config['dataset']}_{time.strftime('%m%d_%H_%M_%S')}"
base_args.extend(['--log_path', log_path])
num_gpus = task_args.get('num_gpus', self.config.get('num_gpus', 1))
# print(f"Starting task with args: {' '.join(base_args)}")
cmd = f"CUDA_VISIBLE_DEVICES={','.join(map(str, gpu))} accelerate launch --num_processes={num_gpus} --multi_gpu --main_process_port 50{random.randint(10, 99)} {' '.join(base_args)}:"
process = subprocess.Popen(cmd,shell=True)
print(f"Task started on GPU {gpu}")
self.processes[tuple(gpu)] = process
def monitor_tasks(self, tasks):
while True:
for gpu_key, process in list(self.processes.items()):
ret_code = process.poll()
if ret_code is not None: # Process has finished
print(f"Task on GPUs {', '.join(map(str, gpu_key))} has finished.") # 更新打印语句以显示所有GPU IDs
del self.processes[gpu_key]
return gpu_key
if tasks: # Only check for available GPUs if there are pending tasks
available_gpus = self.get_available_gpus()
next_task_num_gpus = tasks[0].get('num_gpus',self.config.get('num_gpus', 1)) # 获取num_gpus值,如果没有指定,则默认为1
# next_task_num_gpus = tasks[0]['num_gpus'] # 假设每个任务字典中都有一个'num_gpus'键
if len(available_gpus) >= next_task_num_gpus:
return available_gpus[:next_task_num_gpus]
# free_gpus = [gpu for gpu in available_gpus if gpu not in self.processes.keys()]
# if free_gpus:
# return free_gpus[0]
time.sleep(5)
return None
def start(self):
print("Starting Trainer...")
# Load and check tasks from the config
task_params = self.config.get('tasks', {})
# Check if 'tasks' exists in the config
if task_params:
n = None
for key, values in task_params.items():
if not isinstance(values, list):
task_params[key] = [values]
if n is None:
n = len(task_params[key])
elif n != len(task_params[key]):
raise ValueError("All parameter sequences in 'tasks' should have the same length.")
# Generate tasks based on the new format
tasks = []
num_tasks = n
for i in range(num_tasks):
task = {key: values[i] for key, values in task_params.items()}
tasks.append(task)
else:
# If no 'tasks' specified, consider the entire config as one task (excluding certain keys)
tasks = [{k: v for k, v in self.config.items() if k not in ['name', 'file', 'device', 'tasks']}]
# Start tasks for initially available GPUs
while tasks:
available_gpus = self.get_available_gpus() # Get the updated list of available GPUs
task = tasks[0] # Look at the first task in the queue, but don't pop it yet
num_gpus_required = task.get('num_gpus', self.config.get('num_gpus',1)) # Get the number of GPUs required for this task
# Check if there are enough available GPUs for this task
if len(available_gpus) >= num_gpus_required:
tasks.pop(0) # Now pop the task from the queue
gpu_ids_for_task = available_gpus[:num_gpus_required] # Get the IDs of the GPUs for this task
self.run_task(task, gpu_ids_for_task) # Start the task with the required GPUs
available_gpus = available_gpus[num_gpus_required:] # Update the list of available GPUs
time.sleep(20) # Optional: wait for some time before checking again
else:
break # Not enough GPUs for this task, wait for some to become available
# Wait for tasks to finish and start new tasks on free GPUs
while tasks:
free_gpu = self.monitor_tasks(tasks)
if free_gpu is not None:
task = tasks.pop(0)
self.run_task(task, list(free_gpu))
time.sleep(20)
print("All tasks are either running or queued. Waiting for them to complete...")
while self.processes:
self.monitor_tasks([])
print("All tasks have finished.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Parallel Training or pretraining Neural Operators')
parser.add_argument('--config_file',type=str,default='pretrain_tiny.yaml')
args = parser.parse_args()
trainer = ParallelTrainer(os.path.join('configs',args.config_file))
trainer.start()