forked from BartoszMilewski/XOperad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Numbers.hs
106 lines (82 loc) · 2.76 KB
/
Numbers.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE UndecidableInstances #-} -- for multiplication
module Numbers where
import Data.Proxy
import Data.Constraint
import Unsafe.Coerce
-- Peano numbers
data Nat = Z | S Nat
deriving Show
-- Addition of Nats lifted to types (Here, Nat is a kind)
type family (+) (a :: Nat) (b :: Nat) :: Nat
type instance Z + m = m
type instance S n + m = S (n + m)
type family (*) (a :: Nat) (b :: Nat) :: Nat
type instance Z * m = Z
type instance (S n) * m = m + (n * m)
-- Singleton type parameterized by Nat. Useful for recursion
data SNat n where
SZ :: SNat Z
SS :: SNat n -> SNat (S n)
-- Arithmetic on singletons
plus :: SNat n -> SNat m -> SNat (n + m)
plus SZ n = n
plus (SS n) m = SS (n `plus` m)
-- (1 + n) + m = 1 + (n + m)
-- Things that can be converted to Singleton nats
class KnownNat (n :: Nat) where
natSing :: SNat n
-- Converting lifted Nats to Singetons
instance KnownNat Z where
natSing = SZ
instance KnownNat n => KnownNat (S n) where
natSing = SS natSing
type One = S Z
type Two = S (S Z)
type Three = S (S (S Z))
type Four = S (S (S (S Z)))
type Five = S (S (S (S (S Z))))
type Six = S (S (S (S (S (S Z)))))
type Seven = S (S (S (S (S (S (S Z))))))
type Eight = S (S (S (S (S (S (S (S Z)))))))
type Nine = S (S (S (S (S (S (S (S (S Z))))))))
-- Numbers smaller than n
data Fin n where
FinZ :: Fin (S n) -- zero is less than any successor
FinS :: Fin n -> Fin (S n) -- n is less than (n+1)
instance Eq (Fin n) where
FinZ == FinZ = True
FinS n == FinS m = n == m
_ == _ = False
instance Show (Fin n) where
show FinZ = "0"
show (FinS FinZ) = "1"
show (FinS (FinS FinZ)) = "2"
show (FinS (FinS (FinS FinZ))) = "3"
show (FinS n) = "S " ++ show n
toFin3 :: Int -> Maybe (Fin Three)
toFin3 0 = Just FinZ
toFin3 1 = Just (FinS FinZ)
toFin3 2 = Just (FinS (FinS FinZ))
toFin3 _ = Nothing
-- Axioms
plusZ :: forall n. Dict (n ~ (n + Z))
plusZ = unsafeCoerce (Dict :: Dict (n ~ n))
plusAssoc :: p a -> q b -> r c -> Dict (((a + b) + c) ~ (a + (b + c)))
plusAssoc _ _ _ = unsafeCoerce (Dict :: Dict (a ~ a))
succAssoc :: p a -> q b -> Dict ((a + S b) ~ S (a + b))
succAssoc _ _ = unsafeCoerce (Dict :: Dict (a ~ a))
multDistrib :: p a -> q b -> Dict (S (a * b) ~ (b + (a * b)))
multDistrib _ _ = unsafeCoerce (Dict :: Dict (a ~ a))
-- Convert regular Int to type
-- Can't simply do: exists n. Int -> Proxy n
-- Existential trick: Use CPS
reifyNat :: Int -> (forall n. KnownNat n => Proxy n -> r) -> r
reifyNat 0 k = k (Proxy :: Proxy Z)
reifyNat n k = reifyNat (n - 1) $ \(Proxy :: Proxy n_1) -> k (Proxy :: Proxy (S n_1))