-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
422 lines (385 loc) · 18.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from imports import *
from utils import *
import parallel
class Classifier():
def __init__(self,class_names):
self.class_names = class_names
self.class_correct = defaultdict(int)
self.class_totals = defaultdict(int)
def update_accuracies(self,outputs,labels):
_, preds = torch.max(torch.exp(outputs), 1)
correct = np.squeeze(preds.eq(labels.data.view_as(preds)))
for i in range(labels.shape[0]):
label = labels.data[i].item()
self.class_correct[label] += correct[i].item()
self.class_totals[label] += 1
def get_final_accuracies(self):
accuracy = (100*np.sum(list(self.class_correct.values()))/np.sum(list(self.class_totals.values())))
try:
class_accuracies = [(self.class_names[i],100.0*(self.class_correct[i]/self.class_totals[i]))
for i in self.class_names.keys() if self.class_totals[i] > 0]
except:
class_accuracies = [(self.class_names[i],100.0*(self.class_correct[i]/self.class_totals[i]))
for i in range(len(self.class_names)) if self.class_totals[i] > 0]
return accuracy,class_accuracies
class MultiLabelClassifier():
def __init__(self,class_names):
self.class_names = class_names
self.class_correct = defaultdict(int)
self.class_totals = defaultdict(int)
def accuracies(self,outputs,labels,thresh = 0.5):
accuracies = defaultdict(int)
# outputs = torch.Tensor([[3,1,5,0,2],[0,9,2,7,3]])
# labels = torch.Tensor([[0.,0.,1.,1,0.],[0.,1.,0.,1,0.]])
preds = (outputs >= thresh).float()
correct = (preds==1)*(labels==1)
for i in range(labels.shape[0]):
label = labels.data[i]
label = label.nonzero().squeeze(1)
for l in label:
self.class_correct[l.item()] += correct[i][l].item()
self.class_totals[l.item()] += 1.0
for c in self.class_correct.keys():
accuracies[self.class_names[c]] = 100*(self.class_correct[c]/self.class_totals[c])
return accuracies
class Network(nn.Module):
def __init__(self,device=None):
super().__init__()
self.parallel = False
if device is not None:
self.device = device
else:
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(self.device)
def forward(self,x):
pass
def compute_loss(self,outputs,labels):
return [self.criterion(outputs,labels)]
def fit(self,trainloader,validloader,epochs=2,print_every=10,validate_every=1,save_best_every=1):
optim_path = Path(self.best_model_file)
optim_path = optim_path.stem + '_optim' + optim_path.suffix
with mlflow.start_run() as run:
for epoch in range(epochs):
self.model = self.model.to(self.device)
mlflow.log_param('epochs',epochs)
mlflow.log_param('lr',self.optimizer.param_groups[0]['lr'])
mlflow.log_param('bs',trainloader.batch_size)
print('Epoch:{:3d}/{}\n'.format(epoch+1,epochs))
epoch_train_loss = self.train_((epoch,epochs),trainloader,self.optimizer,print_every)
if validate_every and (epoch % validate_every == 0):
t2 = time.time()
eval_dict = self.evaluate(validloader)
epoch_validation_loss = eval_dict['final_loss']
if self.parallel:
try:
epoch_train_loss = epoch_train_loss.item()
epoch_validation_loss = epoch_validation_loss.item()
except:
pass
mlflow.log_metric('Train Loss',epoch_train_loss)
mlflow.log_metric('Validation Loss',epoch_validation_loss)
time_elapsed = time.time() - t2
if time_elapsed > 60:
time_elapsed /= 60.
measure = 'min'
else:
measure = 'sec'
print('\n'+'/'*36+'\n'
f"{time.asctime().split()[-2]}\n"
f"Epoch {epoch+1}/{epochs}\n"
f"Validation time: {time_elapsed:.6f} {measure}\n"
f"Epoch training loss: {epoch_train_loss:.6f}\n"
f"Epoch validation loss: {epoch_validation_loss:.6f}"
)
if self.model_type == 'classifier':# or self.num_classes is not None:
epoch_accuracy = eval_dict['accuracy']
mlflow.log_metric('Validation Accuracy',epoch_accuracy)
print("Validation accuracy: {:.3f}".format(epoch_accuracy))
# print('\\'*36+'/'*36+'\n')
print('\\'*36+'\n')
if self.best_accuracy == 0. or (epoch_accuracy >= self.best_accuracy):
print('\n**********Updating best accuracy**********\n')
print('Previous best: {:.3f}'.format(self.best_accuracy))
print('New best: {:.3f}\n'.format(epoch_accuracy))
print('******************************************\n')
self.best_accuracy = epoch_accuracy
mlflow.log_metric('Best Accuracy',self.best_accuracy)
optim_path = Path(self.best_model_file)
optim_path = optim_path.stem + '_optim' + optim_path.suffix
torch.save(self.model.state_dict(),self.best_model_file)
torch.save(self.optimizer.state_dict(),optim_path)
mlflow.pytorch.log_model(self,'mlflow_logged_models')
curr_time = str(datetime.now())
curr_time = '_'+curr_time.split()[1].split('.')[0]
mlflow_save_path = Path('mlflow_saved_training_models')/\
(Path(self.best_model_file).stem+'_{}_{}'.format(str(round(epoch_accuracy,2)),str(epoch)+curr_time))
mlflow.pytorch.save_model(self,mlflow_save_path)
else:
print('\\'*36+'\n')
if self.best_validation_loss == None or (epoch_validation_loss <= self.best_validation_loss):
print('\n**********Updating best validation loss**********\n')
if self.best_validation_loss is not None:
print('Previous best: {:.7f}'.format(self.best_validation_loss))
print('New best loss = {:.7f}\n'.format(epoch_validation_loss))
print('*'*49+'\n')
self.best_validation_loss = epoch_validation_loss
mlflow.log_metric('Best Loss',self.best_validation_loss)
optim_path = Path(self.best_model_file)
optim_path = optim_path.stem + '_optim' + optim_path.suffix
torch.save(self.model.state_dict(),self.best_model_file)
torch.save(self.optimizer.state_dict(),optim_path)
mlflow.pytorch.log_model(self,'mlflow_logged_models')
curr_time = str(datetime.now())
curr_time = '_'+curr_time.split()[1].split('.')[0]
mlflow_save_path = Path('mlflow_saved_training_models')/\
(Path(self.best_model_file).stem+'_{}_{}'.format(str(round(epoch_validation_loss,3)),str(epoch)+curr_time))
mlflow.pytorch.save_model(self,mlflow_save_path)
self.train()
torch.cuda.empty_cache()
try:
print('\nLoading best model\n')
self.model.load_state_dict(torch.load(self.best_model_file))
self.optimizer.load_state_dict(torch.load(optim_path))
os.remove(self.best_model_file)
os.remove(optim_path)
except:
pass
def train_(self,e,trainloader,optimizer,print_every):
epoch,epochs = e
self.train()
t0 = time.time()
t1 = time.time()
batches = 0
running_loss = 0.
for data_batch in trainloader:
inputs,labels = data_batch[0],data_batch[1]
batches += 1
inputs = inputs.to(self.device)
labels = labels.to(self.device)
optimizer.zero_grad()
outputs = self.forward(inputs)
loss = self.compute_loss(outputs,labels)[0]
if self.parallel:
loss.sum().backward()
loss = loss.sum()
else:
loss.backward()
loss = loss.item()
optimizer.step()
running_loss += loss
if batches % print_every == 0:
elapsed = time.time()-t1
if elapsed > 60:
elapsed /= 60.
measure = 'min'
else:
measure = 'sec'
batch_time = time.time()-t0
if batch_time > 60:
batch_time /= 60.
measure2 = 'min'
else:
measure2 = 'sec'
print('+----------------------------------------------------------------------+\n'
f"{time.asctime().split()[-2]}\n"
f"Time elapsed: {elapsed:.3f} {measure}\n"
f"Epoch:{epoch+1}/{epochs}\n"
f"Batch: {batches+1}/{len(trainloader)}\n"
f"Batch training time: {batch_time:.3f} {measure2}\n"
f"Batch training loss: {loss:.3f}\n"
f"Average training loss: {running_loss/(batches):.3f}\n"
'+----------------------------------------------------------------------+\n'
)
t0 = time.time()
return running_loss/len(trainloader)
def evaluate(self,dataloader,metric='accuracy'):
running_loss = 0.
classifier = None
if self.model_type == 'classifier':# or self.num_classes is not None:
classifier = Classifier(self.class_names)
y_pred = []
y_true = []
self.eval()
rmse_ = 0.
with torch.no_grad():
for data_batch in dataloader:
inputs, labels = data_batch[0],data_batch[1]
inputs = inputs.to(self.device)
labels = labels.to(self.device)
outputs = self.forward(inputs)
loss = self.compute_loss(outputs,labels)[0]
if self.parallel:
running_loss += loss.sum()
outputs = parallel.gather(outputs,self.device)
else:
running_loss += loss.item()
if classifier is not None and metric == 'accuracy':
classifier.update_accuracies(outputs,labels)
y_true.extend(list(labels.squeeze(0).cpu().numpy()))
_, preds = torch.max(torch.exp(outputs), 1)
y_pred.extend(list(preds.cpu().numpy()))
elif metric == 'rmse':
rmse_ += rmse(outputs,labels).cpu().numpy()
self.train()
ret = {}
# print('Running_loss: {:.3f}'.format(running_loss))
if metric == 'rmse':
print('Total rmse: {:.3f}'.format(rmse_))
ret['final_rmse'] = rmse_/len(dataloader)
ret['final_loss'] = running_loss/len(dataloader)
if classifier is not None:
ret['accuracy'],ret['class_accuracies'] = classifier.get_final_accuracies()
ret['report'] = classification_report(y_true,y_pred,target_names=self.class_names)
ret['confusion_matrix'] = confusion_matrix(y_true,y_pred)
try:
ret['roc_auc_score'] = roc_auc_score(y_true,y_pred)
except:
pass
return ret
def classify(self,inputs,thresh = 0.4,class_names = None):#,show = False,mean = None,std = None):
if class_names is None:
class_names = self.class_names
outputs = self.predict(inputs)
if self.model_type == 'classifier':
try:
_, preds = torch.max(torch.exp(outputs), 1)
except:
_, preds = torch.max(torch.exp(outputs.unsqueeze(0)), 1)
else:
outputs = outputs.sigmoid()
preds = (outputs >= thresh).nonzero().squeeze(1)
class_preds = [str(class_names[p]) for p in preds]
# imgs = batch_to_imgs(inputs.cpu(),mean,std)
# if show:
# plot_in_row(imgs,titles=class_preds)
return class_preds
def predict(self,inputs):
self.eval()
self.model.eval()
self.model = self.model.to(self.device)
with torch.no_grad():
inputs = inputs.to(self.device)
outputs = self.forward(inputs)
return outputs
def find_lr(self,trn_loader,init_value=1e-8,final_value=10.,beta=0.98,plot=False):
print('\nFinding the ideal learning rate.')
model_state = copy.deepcopy(self.model.state_dict())
optim_state = copy.deepcopy(self.optimizer.state_dict())
optimizer = self.optimizer
num = len(trn_loader)-1
mult = (final_value / init_value) ** (1/num)
lr = init_value
optimizer.param_groups[0]['lr'] = lr
avg_loss = 0.
best_loss = 0.
batch_num = 0
losses = []
log_lrs = []
for data_batch in trn_loader:
batch_num += 1
inputs,labels = data_batch[0],data_batch[1]
inputs = inputs.to(self.device)
labels = labels.to(self.device)
optimizer.zero_grad()
outputs = self.forward(inputs)
loss = self.compute_loss(outputs,labels)[0]
#Compute the smoothed loss
if self.parallel:
avg_loss = beta * avg_loss + (1-beta) * loss.sum()
else:
avg_loss = beta * avg_loss + (1-beta) * loss.item()
smoothed_loss = avg_loss / (1 - beta**batch_num)
#Stop if the loss is exploding
if batch_num > 1 and smoothed_loss > 4 * best_loss:
self.log_lrs, self.find_lr_losses = log_lrs,losses
self.model.load_state_dict(model_state)
self.optimizer.load_state_dict(optim_state)
if plot:
self.plot_find_lr()
temp_lr = self.log_lrs[np.argmin(self.find_lr_losses)-(len(self.log_lrs)//8)]
self.lr = (10**temp_lr)
print('Found it: {}\n'.format(self.lr))
return self.lr
#Record the best loss
if smoothed_loss < best_loss or batch_num==1:
best_loss = smoothed_loss
#Store the values
losses.append(smoothed_loss)
log_lrs.append(math.log10(lr))
#Do the SGD step
if self.parallel:
loss.sum().backward()
else:
loss.backward()
optimizer.step()
#Update the lr for the next step
lr *= mult
optimizer.param_groups[0]['lr'] = lr
self.log_lrs, self.find_lr_losses = log_lrs,losses
self.model.load_state_dict(model_state)
self.optimizer.load_state_dict(optim_state)
if plot:
self.plot_find_lr()
temp_lr = self.log_lrs[np.argmin(self.find_lr_losses)-(len(self.log_lrs)//10)]
self.lr = (10**temp_lr)
print('Found it: {}\n'.format(self.lr))
return self.lr
def plot_find_lr(self):
plt.ylabel("Loss")
plt.xlabel("Learning Rate (log scale)")
plt.plot(self.log_lrs,self.find_lr_losses)
plt.show()
def set_criterion(self, criterion):
if criterion:
self.criterion = criterion
def set_optimizer(self,params,optimizer_name='adam',lr=0.003):
if optimizer_name:
if optimizer_name.lower() == 'adam':
print('Setting optimizer: Adam')
self.optimizer = optim.Adam(params,lr=lr)
self.optimizer_name = optimizer_name
elif optimizer_name.lower() == 'sgd':
print('Setting optimizer: SGD')
self.optimizer = optim.SGD(params,lr=lr)
elif optimizer_name.lower() == 'adadelta':
print('Setting optimizer: AdaDelta')
self.optimizer = optim.Adadelta(params)
def set_model_params(self,
criterion = nn.CrossEntropyLoss(),
optimizer_name = 'sgd',
lr = 0.01,
dropout_p = 0.45,
model_name = 'resnet50',
model_type = 'classifier',
best_accuracy = 0.,
best_validation_loss = None,
best_model_file = 'best_model_file.pth'):
self.set_criterion(criterion)
self.optimizer_name = optimizer_name
self.set_optimizer(self.parameters(),optimizer_name,lr=lr)
self.lr = lr
self.dropout_p = dropout_p
self.model_name = model_name
self.model_type = model_type
self.best_accuracy = best_accuracy
self.best_validation_loss = best_validation_loss
self.best_model_file = best_model_file
def get_model_params(self):
params = {}
params['device'] = self.device
params['model_type'] = self.model_type
params['model_name'] = self.model_name
params['optimizer_name'] = self.optimizer_name
params['criterion'] = self.criterion
params['lr'] = self.lr
params['dropout_p'] = self.dropout_p
params['best_accuracy'] = self.best_accuracy
params['best_validation_loss'] = self.best_validation_loss
params['best_model_file'] = self.best_model_file
return params
def freeze(self):
for param in self.model.parameters():
param.requires_grad = False
def unfreeze(self):
for param in self.model.parameters():
param.requires_grad = True