-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDelaunator.py
510 lines (394 loc) · 14.8 KB
/
Delaunator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import math
EPSILON = math.pow(2,-52)
EDGE_STACK =[None] * 512
class Delaunator:
def __init__(self,points):
n = len(points)
if (len(points) < 3):
raise ValueError("Need at least 3 points")
coords = [None] * n * 2
for i in range(0,n):
p = points[i]
coords[2 * i] = (p[0])
coords[2 * i+1] = (p[1])
triangles = self.constructor(coords)
def constructor(self, coords):
n = len(coords) >> 1
self.coords = coords
# arrays that will store the triangulation graph
maxTriangles = max(2 * n - 5, 0)
self._triangles = [None] * maxTriangles * 3
self._halfedges = [None] * maxTriangles * 3
# temporary arrays for tracking the edges of the advancing convex hull
self.hashSize = math.ceil(math.sqrt(n))
self.hullPrev = [None] * n # edge to prev edge
self.hullNext = [None] * n # edge to next edge
self.hullTri = [None] * n # edge to adjacent triangle
self.hullHash = [-1] * self.hashSize # angular edge hash
# temporary arrays for sorting points
self._ids = [None] * n
self._dists = [None] * n
triangles = self.update(coords)
return triangles
def update(self,coords):
n = len(coords) >> 1
# populate an array of point indices; calculate input data bbox
minX = math.inf
minY = math.inf
maxX = -math.inf
maxY = -math.inf
for i in range(0,n):
x = coords[2 * i]
y = coords[2 * i + 1]
if (x < minX): minX = x
if (y < minY): minY = y
if (x > maxX): maxX = x
if (y > maxY): maxY = y
self._ids[i] = i
cx = (minX + maxX) / 2
cy = (minY + maxY) / 2
minDist = math.inf
i0 = 0
i1 = 0
i2 = 0
# pick a seed point close to the center
for i in range(0,n):
d = dist(cx, cy, coords[2 * i], coords[2 * i + 1])
if (d < minDist):
i0 = i
minDist = d
i0x = coords[2 * i0]
i0y = coords[2 * i0 + 1]
minDist = math.inf
# find the point closest to the seed
for i in range(0,n):
if (i == i0): continue
d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1])
if (d < minDist and d > 0):
i1 = i
minDist = d
i1x = coords[2 * i1]
i1y = coords[2 * i1 + 1]
minRadius = math.inf
# find the third point which forms the smallest circumcircle with the first two
for i in range(0,n):
if (i == i0 or i == i1): continue
r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1])
if (r < minRadius):
i2 = i
minRadius = r
i2x = coords[2 * i2]
i2y = coords[2 * i2 + 1]
if (minRadius == math.inf):
# order collinear points by dx (or dy if all x are identical)
# and return the list as a hull
for i in range(0,n):
self._dists[i] = (coords[2 * i] - coords[0]) or (coords[2 * i + 1] - coords[1])
quicksort(self._ids, self._dists, 0, n - 1)
hull = [None] * n
j = 0
d0 = -math.inf
for i in range(0,n):
id = self._ids[i]
if (self._dists[id] > d0):
hull[j] = id
j+=1
d0 = self._dists[id]
self.hull = hull[0:j]
self.triangles = []
self.halfedges = []
# swap the order of the seed points for counter-clockwise orientation
if (orient(i0x, i0y, i1x, i1y, i2x, i2y)):
i = i1
x = i1x
y = i1y
i1 = i2
i1x = i2x
i1y = i2y
i2 = i
i2x = x
i2y = y
center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y)
self._cx = center[0]
self._cy = center[1]
for i in range(0,n):
self._dists[i] = dist(coords[2 * i], coords[2 * i + 1], center[0], center[1])
# sort the points by distance from the seed triangle circumcenter
quicksort(self._ids, self._dists, 0, n - 1)
# set up the seed triangle as the starting hull
self._hullStart = i0
hullSize = 3
self.hullNext[i0] = self.hullPrev[i2] = i1
self.hullNext[i1] = self.hullPrev[i0] = i2
self.hullNext[i2] = self.hullPrev[i1] = i0
self.hullTri[i0] = 0
self.hullTri[i1] = 1
self.hullTri[i2] = 2
self.hullHash[self._hashKey(i0x, i0y)] = i0
self.hullHash[self._hashKey(i1x, i1y)] = i1
self.hullHash[self._hashKey(i2x, i2y)] = i2
self.trianglesLen = 0
self._addTriangle(i0, i1, i2, -1, -1, -1)
xp=0
yp=0
for k in range(0,len(self._ids)):
i = self._ids[k]
x = coords[2 * i]
y = coords[2 * i + 1]
# skip near-duplicate points
if (k > 0 and abs(x - xp) <= EPSILON and abs(y - yp) <= EPSILON): continue
xp = x
yp = y
# skip seed triangle points
if (i == i0 or i == i1 or i == i2): continue
# find a visible edge on the convex hull using edge hash
start = 0
key = self._hashKey(x, y)
for j in range(0,self.hashSize):
start = self.hullHash[(key + j) % self.hashSize]
if (start != -1 and start != self.hullNext[start]): break
start = self.hullPrev[start]
e = start
while True:
q = self.hullNext[e]
if orient(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]): break
e = q
if (e == start):
e = -1
break
if (e == -1): continue # likely a near-duplicate point; skip it
# add the first triangle from the point
t = self._addTriangle(e, i, self.hullNext[e], -1, -1, self.hullTri[e])
# recursively flip triangles from the point until they satisfy the Delaunay condition
self.hullTri[i] = self._legalize(t + 2,coords)
self.hullTri[e] = t # keep track of boundary triangles on the hull
hullSize+=1
# walk forward through the hull, adding more triangles and flipping recursively
n = self.hullNext[e]
while True:
q = self.hullNext[n]
if not (orient(x, y, coords[2 * n], coords[2 * n + 1], coords[2 * q], coords[2 * q + 1])): break
t = self._addTriangle(n, i, q, self.hullTri[i], -1, self.hullTri[n])
self.hullTri[i] = self._legalize(t + 2,coords)
self.hullNext[n] = n # mark as removed
hullSize-=1
n = q
# walk backward from the other side, adding more triangles and flipping
if (e == start):
while True:
q = self.hullPrev[e]
if not (orient(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1])): break
t = self._addTriangle(q, i, e, -1, self.hullTri[e], self.hullTri[q])
self._legalize(t + 2,coords)
self.hullTri[q] = t
self.hullNext[e] = e # mark as removed
hullSize-=1
e = q
# update the hull indices
self._hullStart = self.hullPrev[i] = e
self.hullNext[e] = self.hullPrev[n] = i
self.hullNext[i] = n
# save the two new edges in the hash table
self.hullHash[self._hashKey(x, y)] = i
self.hullHash[self._hashKey(coords[2 * e], coords[2 * e + 1])] = e
self.hull = [None] * hullSize
e = self._hullStart
for i in range(0,hullSize):
self.hull[i] = e
e = self.hullNext[e]
# trim typed triangle mesh arrays
self.triangles = self._triangles[0:self.trianglesLen]
self.halfedges = self._halfedges[0:self.trianglesLen]
return self.triangles
def _hashKey(self,x, y):
return math.floor(pseudoAngle(x - self._cx, y - self._cy) * self.hashSize) % self.hashSize
def _legalize(self,a,coords):
i = 0
ar = 0
# recursion eliminated with a fixed-size stack
while True:
b = self._halfedges[a]
"""
if the pair of triangles doesn't satisfy the Delaunay condition
(p1 is inside the circumcircle of [p0, pl, pr]), flip them,
then do the same check/flip recursively for the new pair of triangles
"""
# pl pl
# /||\ / \
# al/ || \bl al/ \a
# / || \ / \
# / a||b \ flip /___ar___\
# p0\ || /p1 => p0\---bl---/p1
# \ || / \ /
# ar\ || /br b\ /br
# \||/ \ /
# pr pr
a0 = a - a % 3
ar = a0 + (a + 2) % 3
if (b == -1): # convex hull edge
if (i == 0): break
i-=1
a = EDGE_STACK[i]
continue
b0 = b - b % 3
al = a0 + (a + 1) % 3
bl = b0 + (b + 2) % 3
p0 = self._triangles[ar]
pr = self._triangles[a]
pl = self._triangles[al]
p1 = self._triangles[bl]
illegal = inCircle(
coords[2 * p0], coords[2 * p0 + 1],
coords[2 * pr], coords[2 * pr + 1],
coords[2 * pl], coords[2 * pl + 1],
coords[2 * p1], coords[2 * p1 + 1])
if (illegal):
self._triangles[a] = p1
self._triangles[b] = p0
hbl = self._halfedges[bl]
# edge swapped on the other side of the hull (rare); fix the halfedge reference
if (hbl == -1):
e = self._hullStart
while True:
if (self.hullTri[e] == bl):
self.hullTri[e] = a
break
e = self.hullPrev[e]
if (e == self._hullStart): break
self._link(a, hbl)
self._link(b, self._halfedges[ar])
self._link(ar, bl)
br = b0 + (b + 1) % 3
# don't worry about hitting the cap: it can only happen on extremely degenerate input
if (i < len(EDGE_STACK)):
EDGE_STACK[i] = br
i+=1
else:
if (i == 0): break
i-=1
a = EDGE_STACK[i]
return ar
def _link(self,a, b):
self._halfedges[a] = b
if (b != -1):
self._halfedges[b] = a
# add a new triangle given vertex indices and adjacent half-edge ids
def _addTriangle(self,i0, i1, i2, a, b, c):
t = self.trianglesLen
self._triangles[t] = i0
self._triangles[t + 1] = i1
self._triangles[t + 2] = i2
self._link(t, a)
self._link(t + 1, b)
self._link(t + 2, c)
self.trianglesLen += 3
return t
# monotonically increases with real angle, but doesn't need expensive trigonometry
def pseudoAngle(dx, dy):
p = dx / (abs(dx) + abs(dy))
if (dy > 0):
return (3 - p) / 4 # [0..1]
else:
return (1 + p) / 4 # [0..1]
def dist(ax, ay, bx, by):
dx = ax - bx
dy = ay - by
return dx * dx + dy * dy
# return 2d orientation sign if we're confident in it through J. Shewchuk's error bound check
def orientIfSure(px, py, rx, ry, qx, qy):
l = (ry - py) * (qx - px)
r = (rx - px) * (qy - py)
if (abs(l - r) >= 3.3306690738754716e-16 * abs(l + r)):
return l - r
else:
return 0
# a more robust orientation test that's stable in a given triangle (to fix robustness issues)
def orient(rx, ry, qx, qy, px, py):
return (orientIfSure(px, py, rx, ry, qx, qy) or\
orientIfSure(rx, ry, qx, qy, px, py) or\
orientIfSure(qx, qy, px, py, rx, ry)) < 0
def inCircle(ax, ay, bx, by, cx, cy, px, py):
dx = ax - px
dy = ay - py
ex = bx - px
ey = by - py
fx = cx - px
fy = cy - py
ap = dx * dx + dy * dy
bp = ex * ex + ey * ey
cp = fx * fx + fy * fy
return dx * (ey * cp - bp * fy) -\
dy * (ex * cp - bp * fx) +\
ap * (ex * fy - ey * fx) < 0
def circumradius(ax, ay, bx, by, cx, cy):
dx = bx - ax
dy = by - ay
ex = cx - ax
ey = cy - ay
bl = dx * dx + dy * dy
cl = ex * ex + ey * ey
try:
d = 0.5/(dx * ey - dy * ex)
except ZeroDivisionError:
d = float('inf')
x = (ey * bl - dy * cl) * d
y = (dx * cl - ex * bl) * d
return x*x + y*y
def circumcenter(ax, ay, bx, by, cx, cy):
dx = bx - ax
dy = by - ay
ex = cx - ax
ey = cy - ay
bl = dx * dx + dy * dy
cl = ex * ex + ey * ey
try:
d = 0.5/(dx * ey - dy * ex)
except ZeroDivisionError:
d = float('inf')
x = ax + (ey * bl - dy * cl) * d
y = ay + (dx * cl - ex * bl) * d
return x, y
def quicksort(ids, dists, left, right):
if (right - left <= 20):
for i in range(left + 1,right+1):
temp = ids[i]
tempDist = dists[temp]
j = i-1
while (j >= left and dists[ids[j]] > tempDist):
ids[j + 1] = ids[j]
j-=1
ids[j + 1] = temp;
else:
median = (left + right) >> 1
i = left + 1
j = right
swap(ids, median, i)
if (dists[ids[left]] > dists[ids[right]]):
swap(ids, left, right)
if (dists[ids[i]] > dists[ids[right]]):
swap(ids, i, right)
if (dists[ids[left]] > dists[ids[i]]):
swap(ids, left, i)
temp = ids[i]
tempDist = dists[temp]
while True:
while True:
i+=1
if (dists[ids[i]] >= tempDist): break
while True:
j-=1
if (dists[ids[j]] <= tempDist): break
if (j < i): break
swap(ids, i, j);
ids[left + 1] = ids[j];
ids[j] = temp;
if (right - i + 1 >= j - left):
quicksort(ids, dists, i, right)
quicksort(ids, dists, left, j - 1)
else:
quicksort(ids, dists, left, j - 1)
quicksort(ids, dists, i, right)
def swap(arr, i, j):
tmp = arr[i]
arr[i] = arr[j]
arr[j] = tmp