Skip to content

Commit cca7a83

Browse files
committed
Improve semantic HTML for accessibility
1 parent 0f940de commit cca7a83

File tree

11 files changed

+183
-136
lines changed

11 files changed

+183
-136
lines changed

_includes/member.html

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
<td width="112">
22
{% if include.image != "" %}
3-
<img src="{{ include.image }}" align="right" height="200px" alt="{{ include.name }}" />
3+
<img src="{{ include.image }}" align="right" height="200px" alt="Photo of {{ include.name }}" />
44
{% endif %}
55
</td>
66
{% if include.full_row %}
@@ -12,6 +12,6 @@ <h2>{{ include.name }}</h2>
1212
<script>
1313
emicon("{{ include.email_suffix }}", "{{ include.email_domain }}", "{{ include.email_name }}");
1414
</script>
15-
<h4 class="contact">{{ include.title }}</h4>
15+
<h3 class="contact">{{ include.title }}</h3>
1616
<p class="bio">{{ include.bio }}</p>
1717
</td>

assets/css/style.scss

+15-12
Original file line numberDiff line numberDiff line change
@@ -14,12 +14,12 @@ body {
1414
text-align: center;
1515
}
1616

17-
h1, h2, h3, h4, h5, h6, #masthead {
17+
h1, h2, h3, h4, h5, h6, #masthead, #affiliations {
1818
font-family: Oswald, sans-serif;
1919
}
2020

2121
#main-body {
22-
text-align: justify;
22+
text-align: left;
2323
margin: 0px 50px 50px 50px;
2424
width: 750px;
2525
}
@@ -28,12 +28,6 @@ h1, h2, h3, h4, h5, h6, #masthead {
2828
text-align: center;
2929
}
3030

31-
.center {
32-
display: block;
33-
margin-left: auto;
34-
margin-right: auto;
35-
}
36-
3731
#box {
3832
position: relative
3933
}
@@ -50,6 +44,12 @@ h1, h2, h3, h4, h5, h6, #masthead {
5044
vertical-align: middle;
5145
}
5246

47+
#affiliations {
48+
text-align: center;
49+
font-weight: bold;
50+
font-style: italic;
51+
}
52+
5353
#contact-info {
5454
text-align: center;
5555
}
@@ -60,8 +60,11 @@ h1, h2, h3, h4, h5, h6, #masthead {
6060
text-align: left;
6161
}
6262

63-
.caption {
64-
text-align: justify;
63+
figure {
64+
text-align: center;
65+
}
66+
67+
figcaption {
6568
font-size: 80%;
6669
width: inherit;
6770
}
@@ -128,7 +131,7 @@ ul {
128131
display: inline;
129132
}
130133

131-
#members-grid h4 {
134+
#members-grid h3 {
132135
text-align: left;
133136
}
134137

@@ -151,7 +154,7 @@ ul {
151154

152155
#members-grid .bio {
153156
font-size: 80%;
154-
text-align: justify;
157+
text-align: left;
155158
}
156159

157160
#members-grid .mail-icon {

index.md

+7-2
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,10 @@ title: Home
44

55
# Welcome to the Ion Trap Group at UC Berkeley
66

7-
#### Department of Physics, University of California, Berkeley <br/> Berkeley Nanosciences and Nanoengineering Institute
7+
<div id="affiliations">
8+
Department of Physics, University of California, Berkeley <br/>
9+
Berkeley Nanosciences and Nanoengineering Institute
10+
</div>
811

912
We trap ions to investigate various aspects of quantum physics and quantum information. The motion of trapped ions can be accurately controlled in the quantum regime. Together with the ions' excellent quantum memory capabilities, trapped ions are thus an excellent system to investigate experimental quantum information processing. Furthermore, we couple the motion of trapped ions to bulk materials to learn more about the quantum properties of mesoscopic systems. See our
1013
research tab for more information about specific projects.
@@ -13,7 +16,9 @@ research tab for more information about specific projects.
1316
We have a limited number of undergraduate research positions available! If you are interested, please send your CV and transcript to Hartmut Haeffner ([email protected]).
1417
-->
1518

16-
<img src="/members/pics/group_photo_2019_lowres.jpg" width="600px" class="center" alt="Group photo 2019">
19+
<figure>
20+
<img src="/members/pics/group_photo_2019_lowres.jpg" width="600px" alt="Group photo 2019" />
21+
</figure>
1722

1823
<div align="center">
1924
<a class="twitter-timeline" data-width="650" data-height="1000" data-dnt="true" data-theme="light" href="https://twitter.com/Berkeley_ions?ref_src=twsrc%5Etfw">

members/index.md

+9-6
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ title: Group Members
55
# {{ page.title }}
66

77
<div id="members-grid">
8-
<table>
8+
<table role="presentation">
99
<tr>
1010
{% include member.html
1111
full_row=true
@@ -230,8 +230,11 @@ title: Group Members
230230
| Christopher Reilly | Alex Georges | Jessica Yu | Andre He | Thomas Lloyd |
231231
| Zhao Zhang | Nadav Drechsler | Lara Ostertag | Samuel Cui | Tim Guo |
232232

233-
<br/>
234-
235-
| <img src="/members/pics/groupphoto_2018_final.jpg" width="375px" alt="Group photo 2018"/> |<img src="/members/pics/group_photo_2017.JPG" width="375px" alt="Group photo 2017"/> |
236-
| <img src="/members/pics/group_fall2015.JPG" width="375px" alt="Group photo fall 2015"/> | <img src="/members/pics/group_photo_2015.jpg" width="375px" alt="Group photo spring 2015"/> |
237-
| <img src="/members/pics/group_pic_2014.jpg" width="375px" alt="Group photo 2014"/> | <img src="/members/pics/group_picture_2013_IMG_6170_lower_res.JPG" width="375px" alt="Group photo 2013"/> |
233+
<figure>
234+
<img src="/members/pics/groupphoto_2018_final.jpg" width="325px" alt="Group photo 2018"/>
235+
<img src="/members/pics/group_photo_2017.JPG" width="325px" alt="Group photo 2017"/>
236+
<img src="/members/pics/group_fall2015.JPG" width="325px" alt="Group photo fall 2015"/>
237+
<img src="/members/pics/group_photo_2015.jpg" width="325px" alt="Group photo spring 2015"/>
238+
<img src="/members/pics/group_pic_2014.jpg" width="325px" alt="Group photo 2014"/>
239+
<img src="/members/pics/group_picture_2013_IMG_6170_lower_res.JPG" width="325px" alt="Group photo 2013"/>
240+
</figure>

research/eQIP/index.md

+8-4
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,12 @@ title: Electron Quantum Information Processing
44

55
# {{ page.title }}
66

7-
<img src="/research/eQIP/Trap.png" alt="Electron trap" width="655.5" height="350.25" class="center" />
7+
<figure>
8+
<img src="/research/eQIP/Trap.png" alt="Electron trap" height="350" />
9+
<figcaption>
10+
Proposed schematic for electron trap.
11+
</figcaption>
12+
</figure>
813

914
Trapped ions are currently one of the most promising candidates for
1015
building quantum computers. Building large-scale devices with trapped
@@ -26,6 +31,5 @@ The combination of fast gate operations and long coherence times make
2631
electrons a very attractive system, that could rival trapped ions and
2732
superconducting circuits in the long run.
2833

29-
[Phys. Rev. A 95, 012312 (2017)](http://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.012312), [arXiv:1611.00130](http://arxiv.org/abs/1611.00130).
30-
31-
[New J. Phys. 15, 073017 (2013)](http://iopscience.iop.org/1367-2630/15/7/073017/), [arXiv:1304.4710](http://arxiv.org/abs/1304.4710).
34+
[Phys. Rev. A 95, 012312 (2017)](http://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.012312), [arXiv:1611.00130](http://arxiv.org/abs/1611.00130)
35+
[New J. Phys. 15, 073017 (2013)](http://iopscience.iop.org/1367-2630/15/7/073017/), [arXiv:1304.4710](http://arxiv.org/abs/1304.4710)

research/quantum-computing/index.md

+6-5
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,9 @@ field noise emerging from the trap electrodes as this noise leads to heating of
1313
interferes with the most popular quantum gates for trapped ions. In order to attack this problem,
1414
we combine an ion trap with variable temperature together with surface cleaning and analyzation tools.
1515

16-
<table class="image" align="center"><caption class="caption" align="bottom" style="caption-side: bottom">
17-
Argon cleaning of a planar trap.
18-
</caption>
19-
<TR><TD><img src="/research/quantum-computing/argon_cleaning.jpg" alt="Argon cleaning of a planar trap" class="center" height="400" ></TD></TR>
20-
</table>
16+
<figure>
17+
<img src="/research/quantum-computing/argon_cleaning.jpg" alt="Photo of argon cleaning process" height="400" />
18+
<figcaption>
19+
Argon cleaning of a planar trap.
20+
</figcaption>
21+
</figure>

research/quantum-electronics/index.md

+32-32
Original file line numberDiff line numberDiff line change
@@ -12,23 +12,23 @@ between 50 &mu;m and 300 &mu;m above the surface, using only DC electrodes, crea
1212
precision electric-field noise detection, trapping of vertical ion strings without excess micromotion,
1313
and potential applications for scalable quantum computers with surface ion traps.
1414

15-
<table class="image" align="center">
16-
<caption class="caption" align="bottom" style="caption-side: bottom">
17-
Fig. 1. (a) False-color microscope image of the microfabricated four-rf-electrode trap.
18-
Static voltages are applied to electrodes labeled dc, and rf electrodes are labeled rf+-
19-
according to the signal phase. (b) Top-down view of xy-plane rf pseudopotentials at a
20-
height of z = 175 &mu;m, with electrode geometry shown for reference.
21-
(c) Side view of rf potentials.
22-
</caption>
23-
<TR><TD><img src="/research/quantum-electronics/SingleTrap.jpeg" alt="Trap layout and potentials" height="200"></TD></TR>
24-
</table>
25-
26-
<table class="image" align="center">
27-
<caption class="caption" align="bottom" style="caption-side: bottom">
28-
Fig. 2. Simulated shuttling of the ion perpendicular to the trap surface.
29-
</caption>
30-
<TR><TD><img src="/research/quantum-electronics/potential_lines.gif" alt="Potential during ion shuttling" height="350"></TD></TR>
31-
</table>
15+
<figure>
16+
<img src="/research/quantum-electronics/SingleTrap.jpeg" alt="Trap layout and potentials" height="200" />
17+
<figcaption>
18+
Fig. 1. (a) False-color microscope image of the microfabricated four-rf-electrode trap.
19+
Static voltages are applied to electrodes labeled dc, and rf electrodes are labeled rf+-
20+
according to the signal phase. (b) Top-down view of xy-plane rf pseudopotentials at a
21+
height of z = 175 &mu;m, with electrode geometry shown for reference.
22+
(c) Side view of rf potentials.
23+
</figcaption>
24+
</figure>
25+
26+
<figure>
27+
<img src="/research/quantum-electronics/potential_lines.gif" alt="Potential during ion shuttling" height="350" />
28+
<figcaption>
29+
Fig. 2. Simulated shuttling of the ion perpendicular to the trap surface.
30+
</figcaption>
31+
</figure>
3232

3333
## Electric-field noise vs. ion height
3434

@@ -38,14 +38,14 @@ We find the distance dependence of the noise to scale as d<sup>-2.6</sup> in our
3838
which is consistent with 1/f noise. With significant evidence that we are not limited by technical
3939
noise sources, our distance scaling data is consistent with a noise correlation length of about 100
4040
&mu;m at the trap surface.
41-
42-
<table class="image" align="center">
43-
<caption class="caption" align="bottom" style="caption-side: bottom">
41+
42+
<figure>
43+
<img src="/research/quantum-electronics/DistanceScaling.png" alt="Heating rate vs. distance" height="300" />
44+
<figcaption>
4445
Fig. 3. Planar (blue) and normal (red) heating rates as a function of ion-surface distance for a
4546
fixed secular frequency of 1 MHz. Power-law fits are overlayed for reference.
46-
</caption>
47-
<TR><TD><img src="/research/quantum-electronics/DistanceScaling.png" alt="Heating rate vs. distance" height="300"></TD></TR>
48-
</table>
47+
</figcaption>
48+
</figure>
4949

5050
## Quantum information transfer through a classical conductor
5151

@@ -56,14 +56,14 @@ size of 50 &mu;m. This inter-trap coupling may be used for scalable quantum comp
5656
species that are not directly accessible to laser cooling, non-invasive study of superconductors,
5757
and realization of hybrid systems by coupling an ion-trap quantum computer to a solid-state quantum computer,
5858
e.g. a system of Josephson junctions.
59-
60-
<table class="image" align="center">
61-
<caption class="caption" align="bottom" style="caption-side: bottom">
62-
Fig. 4. Schematic of coupling trap. The two trapping regions are located above the centers of the red squares,
63-
which are connected via an electrically floating wire. Out-of-phase RF is applied to the green electrodes,
64-
and DC is applied to the blue electrodes.
65-
</caption>
66-
<TR><TD><img src="/research/quantum-electronics/DoubleTrap.png" alt="Double trap" height="300"></TD></TR>
67-
</table>
59+
60+
<figure>
61+
<img src="/research/quantum-electronics/DoubleTrap.png" alt="Double trap" height="300" />
62+
<figcaption>
63+
Fig. 4. Schematic of coupling trap. The two trapping regions are located above the centers of the red squares,
64+
which are connected via an electrically floating wire. Out-of-phase RF is applied to the green electrodes,
65+
and DC is applied to the blue electrodes.
66+
</figcaption>
67+
</figure>
6868

6969
This project is supported by AFOSR project "Prototype solid state quantum interface for trapped ions".

research/quantum-emulation/index.md

+39-26
Original file line numberDiff line numberDiff line change
@@ -27,9 +27,16 @@ In collaboration with Birgitta Whaley (University of California, Berkeley) and M
2727
we aim to bring new understanding to energy transduction and transport in materials, and help improve the design of
2828
new photodetectors and new photovoltaic systems.
2929

30-
More details can be found in: [Phys. Rev. X 8, 011038 (2018)](https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.011038).
30+
More details can be found in:
31+
[Phys. Rev. X 8, 011038 (2018)](https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.011038)
3132

32-
<img src="/research/quantum-emulation/VAET_section.jpg" width="558" alt="Vibrationally-assisted energy transfer" class="center" />
33+
<figure>
34+
<img src="/research/quantum-emulation/VAET_section.jpg" alt="Figures related to vibrationally-assisted energy transfer experiment" />
35+
<figcaption>
36+
Schematic illustrations of the VAET process, the ion trap apparatus, the implementation of the experiment,
37+
and the experimental energy transfer results. Figures from Phys. Rev. X 8, 011038.
38+
</figcaption>
39+
</figure>
3340

3441
## Verifying an analog quantum simulator
3542

@@ -47,26 +54,27 @@ operating consistently, but that it is also operating faithfully according to th
4754
Such techniques can be applied to subsets of a larger system to allow an experimentalist to characterize
4855
and diagnose the behavior in a scalable way.
4956

50-
More information is available at: [npj Quantum Inf. 7, 46 (2021)](https://www.nature.com/articles/s41534-021-00380-8).
57+
More information is available at:
58+
[npj Quantum Inf. 7, 46 (2021)](https://www.nature.com/articles/s41534-021-00380-8)
5159

52-
<table class="image" align="center">
53-
<caption class="caption" align="bottom" style="caption-side: bottom">
54-
<b>Illustration of verification protocols for analog
55-
quantum simulators.</b> Various protocols yield information
56-
about the accuracy of a quantum simulator by propagating
57-
a state along a closed loop and verifying to what degree the
58-
system returns to its original state, labeled here as |0&#10217;.
59-
The state |&#968;&#10217; denotes the state of the system after applying the dynamics of Hamiltonian <i>H</i>
60-
for a time &#964;, whereas the state |&#632;&#10217; denotes an arbitrary state.
61-
<br/>(a) <i>Time-reversal analog verification:</i> Running an analog simulation forward in time, followed by the same analog simulation backward in time.
62-
<br/>(b) <i>Multi-basis analog verification:</i> Running an analog simulation forward in time, rotating the state, performing the
63-
backward simulation by an analog version in the rotated basis, and finally rotating the state back.
64-
<br/>(c) <i>Randomized analog verification:</i> Running a random sequence of subsets of the Hamiltonian terms
65-
(denoted as <i>H</i><sub>rand</sub>), followed by an inversion sequence of subsets of the Hamiltonian terms which has been
66-
calculated to return the system approximately to a basis state.
67-
</caption>
68-
<TR><TD><img src="/research/quantum-emulation/verification-protocols.png" alt="Illustration of verification protocols for analog quantum simulators" width="500"></TD></TR>
69-
</table>
60+
<figure>
61+
<img src="/research/quantum-emulation/verification-protocols.png" alt="Diagrams of verification protocols for analog quantum simulators" width="500" />
62+
<figcaption>
63+
<b>Illustration of verification protocols for analog
64+
quantum simulators.</b> Various protocols yield information
65+
about the accuracy of a quantum simulator by propagating
66+
a state along a closed loop and verifying to what degree the
67+
system returns to its original state, labeled here as |0&#10217;.
68+
The state |&#968;&#10217; denotes the state of the system after applying the dynamics of Hamiltonian <i>H</i>
69+
for a time &#964;, whereas the state |&#632;&#10217; denotes an arbitrary state.
70+
<br/>(a) <i>Time-reversal analog verification:</i> Running an analog simulation forward in time, followed by the same analog simulation backward in time.
71+
<br/>(b) <i>Multi-basis analog verification:</i> Running an analog simulation forward in time, rotating the state, performing the
72+
backward simulation by an analog version in the rotated basis, and finally rotating the state back.
73+
<br/>(c) <i>Randomized analog verification:</i> Running a random sequence of subsets of the Hamiltonian terms
74+
(denoted as <i>H</i><sub>rand</sub>), followed by an inversion sequence of subsets of the Hamiltonian terms which has been
75+
calculated to return the system approximately to a basis state.
76+
</figcaption>
77+
</figure>
7078

7179
## Precision measurements using trapped ions
7280

@@ -86,9 +94,14 @@ states may yield substantial further improvements. Our measurements improve the
8694
local Lorentz invariance of the electron using calcium ions by factor of two to about 5e-19.
8795

8896
More details can be found in:
89-
[Nature 517, 592 (2015)](http://dx.doi.org/10.1038/nature14091).
90-
[Nature Physics 12, 465-468 (2016)](http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3610.html).
91-
[Phys. Rev. Lett. 120, 103202 (2018)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.103202).
92-
[Phys. Rev. Lett. 122, 123605 (2019)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.123605).
97+
[Nature 517, 592 (2015)](http://dx.doi.org/10.1038/nature14091)
98+
[Nature Physics 12, 465-468 (2016)](http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3610.html)
99+
[Phys. Rev. Lett. 120, 103202 (2018)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.103202)
100+
[Phys. Rev. Lett. 122, 123605 (2019)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.123605)
93101

94-
<img src="/research/quantum-emulation/Lattice_section_web.jpg" width="600" alt="Experimental test of local Lorentz invariance" class="center" />
102+
<figure>
103+
<img src="/research/quantum-emulation/Lattice_section_web.jpg" alt="Experimental test of local Lorentz invariance" width="650" />
104+
<figcaption>
105+
Overview of local Lorentz invariance test and results.
106+
</figcaption>
107+
</figure>

0 commit comments

Comments
 (0)