-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
376 lines (240 loc) · 9.17 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import math
import random
random.seed() # Change to "random.seed(n)" to have the random tests always return the same value
answers = {}
ANSWER_1_getargs = 'VALUE' # Special case to get the value named "FOO_getargs"
def ANSWER_1_testanswer(ans, original_val = None):
return ( str(ans) == "2" )
ANSWER_1_expected = 2
def cube_1_getargs():
return [10]
def cube_1_testanswer(ans, original_val = None):
return ( ans == 1000 )
cube_1_expected = 1000
def cube_2_getargs():
return [1]
def cube_2_testanswer(ans, original_val = None):
return ( ans == 1 )
cube_2_expected = 1
def cube_3_getargs():
return [-5]
def cube_3_testanswer(ans, original_val = None):
return ( ans == -125 )
cube_3_expected = -125
cube_4_randnum = 0
def cube_4_getargs():
answers['cube_4_randnum'] = [ random.randint(1,1000) ]
return answers['cube_4_randnum']
def in_range(a,b,max_delta):
return (a >= b - max_delta and a <= b + max_delta)
def cube_4_testanswer(ans, original_val = None):
if original_val == None:
original_val = answers['cube_4_randnum']
return ( original_val[0]**3 == ans )
cube_4_expected = "a number between 1 and 1000000000 (this test is randomly generated)"
def factorial_1_getargs():
return [1]
def factorial_1_testanswer(ans, original_val = None):
return ( ans == 1 )
factorial_1_expected = 1
def factorial_2_getargs():
return [5]
def factorial_2_testanswer(ans, original_val = None):
return ( ans == 120 )
factorial_2_expected = 120
factorial_3_randnum = 0
def factorial_3_getargs():
answers['factorial_3_randnum'] = [ random.randint(1,12) ]
return answers['factorial_3_randnum']
def factorial_3_testanswer(ans, original_val = None):
if original_val == None:
original_val = answers['factorial_3_randnum']
for i in xrange(1, original_val[0]+1):
ans /= float(i)
return in_range(ans, 1, 0.0001)
factorial_3_expected = "a number between 1! and 30! (this test is randomly generated)"
def count_pattern_1_getargs():
return [[2,3], [1,2,3,2,3,4,3,4,5]]
def count_pattern_1_testanswer(ans, original_val = None):
return (ans == 2)
count_pattern_1_expected = 2
def count_pattern_2_getargs():
return [ [1, [2,3]], [1, [2,3], 2, 3, 1, [2,3,4]] ]
def count_pattern_2_testanswer(ans, original_val = None):
return ( ans == 1 )
count_pattern_2_expected = 1
def count_pattern_3_getargs():
answers['count_pattern_3_random'] = random.randint(1,10)
answers['count_pattern_3_random'] = [[1,2,3,2,3], [1,2,3,2,3]*answers['count_pattern_3_random']]
return answers['count_pattern_3_random']
def count_pattern_3_testanswer(ans, original_val = None):
if original_val == None:
original_val = answers['count_pattern_3_random']
return ( len(original_val[1])/5 == ans )
count_pattern_3_expected = "an integer between 1 and 10 (this test is randomly generated)"
def depth_1_getargs():
return ['x']
def depth_1_testanswer(ans, original_val = None):
return (ans == 0)
depth_1_expected = 0
def depth_2_getargs():
return [['expt', 'x', 2]]
def depth_2_testanswer(ans, original_val = None):
return (ans == 1)
depth_2_expected = 1
def depth_3_getargs():
return [['+', ['expt', 'x', 2], ['expt', 'y', 2]]]
def depth_3_testanswer(ans, original_val = None):
return (ans == 2)
depth_3_expected = 2
def depth_4_getargs():
return [['/', ['expt', 'x', 5], ['expt', ['-', ['expt', 'x', 2], '1'], ['/', 5, 2]]]]
def depth_4_testanswer(ans, original_val = None):
return (ans == 4)
depth_4_expected = 4
sample_tree = [[[1, 2], 3], 7, [4, [5, 6]], [8, 9, 10]]
def tree_ref_1_getargs():
return [sample_tree, [3,1]]
def tree_ref_1_testanswer(ans, original_val = None):
return ( ans == 9 )
tree_ref_1_expected = 9
def tree_ref_2_getargs():
return [ sample_tree, [0] ]
def tree_ref_2_testanswer(ans, original_val = None):
return ( ans == [[1,2],3] )
tree_ref_2_expected = [[1,2],3]
tree_ref_3_random = 0
def tree_ref_3_getargs():
answers['tree_ref_3_random'] = [ sample_tree, [random.randint(0,len(sample_tree)-1)] ]
return answers['tree_ref_3_random']
def tree_ref_3_testanswer(ans, original_val = None):
if original_val == None:
original_val = answers['tree_ref_3_random']
return ( ans == sample_tree[original_val[1][0]] )
tree_ref_3_expected = "(this test is randomly generated)"
from algebra import Sum, Product, Expression
def is_flat(lst, allowed_nesting = 2):
if isinstance(lst, Sum):
for elt in lst:
if isinstance(elt, Product):
if not is_flat(elt, allowed_nesting=allowed_nesting-1):
return False
elif isinstance(elt, (list, tuple)):
return False
return True
elif isinstance(lst, Product) and allowed_nesting != 0:
for elt in lst:
if isinstance(elt, Product):
if not is_flat(elt, allowed_nesting=allowed_nesting-1):
return False
elif isinstance(elt, (list, tuple)):
return False
return True
elif allowed_nesting == 0:
for elt in lst:
if isinstance(elt, (list, tuple)):
return False
return True
else:
return False
def is_list(lst):
return isinstance(lst, (list, tuple))
def substitute_vars(lst, context = {}):
retVal = lst.__class__()
for elt in lst:
if isinstance(elt, (list, tuple)):
retVal.append(substitute_vars(elt, context))
elif elt in context:
retVal.append(context[elt])
else:
retVal.append(elt)
return retVal
def evaluator(lst, context = {}):
if isinstance(lst, Sum):
retVal = 0
for elt in lst:
if elt in context.keys():
elt = context[elt]
if isinstance(elt, Expression):
retVal += evaluator(elt, context)
else:
retVal += elt
# print retVal
return retVal
elif isinstance(lst, Product):
retVal = 1
for elt in lst:
if elt in context.keys():
elt = context[elt]
if isinstance(elt, Expression):
retVal *= evaluator(elt, context)
else:
retVal *= elt
# print retVal
return retVal
def distribution_1_getargs():
return [ encode_sumprod(Sum([1, Product([3, 1])])) ]
def distribution_1_testanswer(ans, original_val = None):
ans = decode_sumprod(ans)
return ( evaluator(ans) == 4 and is_flat(ans) )
distribution_1_expected = "A simplified Expression that evaluates to 4"
def distribution_2_getargs():
return [ encode_sumprod(Product([1, Sum([3, 1])])) ]
def distribution_2_testanswer(ans, original_val = None):
ans = decode_sumprod(ans)
return ( evaluator(ans) == 4 and is_flat(ans) )
distribution_2_expected = "A simplified Expression that evaluates to 4"
def distribution_3_getargs():
return [ encode_sumprod(Product([2, Sum([3, 4])])) ]
def distribution_3_testanswer(ans, original_val = None):
ans = decode_sumprod(ans)
return ( evaluator(ans) == 14 and is_flat(ans) )
distribution_3_expected = "A simplified Expression that evaluates to '14'"
def distribution_4_getargs():
return [ encode_sumprod(Sum([2, Product([3, Product([8, Sum([3, 12]), 5])]) ])) ]
def distribution_4_testanswer(ans, original_val = None):
ans = decode_sumprod(ans)
return ( evaluator(ans) == 1802 and is_flat(ans) )
distribution_4_expected = "A flat expression that evaluates to 1802"
distribution_5_random = []
def distribution_5_getargs():
answers['distribution_5_random'] = [ encode_sumprod(Sum([2*random.randint(1,50), Product([3, Product([8, Sum(['x', 'y']), 5])]) ])) ]
return answers['distribution_5_random']
def distribution_5_testanswer(ans, original_val = None):
ans = decode_sumprod(ans)
if original_val == None:
original_val = answers['distribution_5_random']
original_val = [ decode_sumprod( original_val[0] ) ]
context = {'x': random.randint(1,50), 'y': random.randint(1,50)}
return ( evaluator(ans, context) == evaluator(original_val[0], context) and is_flat(ans) )
distribution_5_expected = "(this test is randomly generated)"
# Just accept the survey answers as-is
#def survey_answer_getargs():
# return []
#
#def survey_answer_testanswer(ans, original_val = None):
# return True
def encode_sumprod(lst):
retVal = []
if isinstance(lst, Sum):
retVal.append('Sum')
elif isinstance(lst, Product):
retVal.append('Product')
for elt in lst:
if isinstance(elt, (Sum, Product)):
retVal.append( encode_sumprod(elt) )
else:
retVal.append(elt)
return retVal
def decode_sumprod(lst):
retVal = []
for elt in lst[1:]:
if isinstance(elt, (list, tuple)):
retVal.append(decode_sumprod(elt))
else:
retVal.append(elt)
if lst[0] == 'Sum':
retVal = Sum(retVal)
else:
retVal = Product(retVal)
return retVal