-
Notifications
You must be signed in to change notification settings - Fork 83
/
llama_greedy.py
162 lines (139 loc) · 5.39 KB
/
llama_greedy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
###############################################################################
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company
###############################################################################
import os
import pandas as pd
import torch
import time
import json
import argparse
import struct
import contextlib
from utils import initialize_model, setup_parser, logger, print_stats
def measure_perf(txt="", tps=False, reset=False):
if hasattr(measure_perf, "prev") and not reset and txt:
duration = time.perf_counter()-measure_perf.prev
if tps:
tps_str = f"Throughput: {(args.batch_size * args.max_new_tokens)/duration:.0f} TPS"
else:
tps_str = ""
logger.info(
f"{txt} took {duration:.3f} sec. {tps_str}")
else:
duration = 0
measure_perf.prev = time.perf_counter()
return duration
def get_ds(args):
ds = pd.read_pickle(args.dataset)
if args.n_iterations:
ds = ds.head(args.n_iterations * args.batch_size)
return ds
def get_input(ds, batch_size):
queries = []
tok_input = ds["tok_input"].tolist()
for start in range(0, len(ds), batch_size):
end = start + batch_size
batch = tok_input[start:end]
input_ids = []
attention_mask = []
for query in batch:
input_ids.append(
[0] * (args.max_input_tokens - len(query)) + query)
attention_mask.append(
[0] * (args.max_input_tokens - len(query)) + [1] * len(query))
queries.append({
'input_ids': torch.tensor(input_ids, dtype=torch.int32),
'attention_mask': torch.tensor(attention_mask, dtype=torch.int32)
})
return queries
def setup_profiler(args):
if args.profiling_scope == "batch" and args.profiling_steps != 0:
import habana_frameworks.torch.core as htcore
profiler = torch.profiler.profile(
schedule=torch.profiler.schedule(
wait=0, warmup=args.profiling_warmup_steps, active=args.profiling_steps, repeat=1),
activities=[torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.HPU],
on_trace_ready=torch.profiler.tensorboard_trace_handler('hpu_profile'))
return 0, 0, profiler, profiler.step
else:
def step():
pass
return args.profiling_warmup_steps, args.profiling_steps, contextlib.nullcontext(), step
def main(args, ds):
local_rank = int(os.getenv('LOCAL_RANK', '0'))
print_logs = (local_rank == 0)
print(f"Dataset has {len(ds)} samples.")
os.makedirs(args.output_dir, exist_ok=True)
batches = get_input(ds, args.batch_size)
model, _, generation_config = initialize_model(args, logger)
_, _, profiler, _ = setup_profiler(args)
def generate(input_queries, warmup=False):
for t in input_queries:
if torch.is_tensor(input_queries[t]):
input_queries[t] = input_queries[t].to(args.device)
with torch.autograd.profiler.record_function("generate:"):
outputs = model.generate(
**input_queries,
generation_config=generation_config,
lazy_mode=True,
hpu_graphs=args.use_hpu_graphs,
profiling_steps=args.profiling_steps if not warmup else 0,
profiling_warmup_steps=args.profiling_warmup_steps,
).cpu()
outputs = outputs.tolist()
for i in range(len(outputs)):
outputs[i] = outputs[i][args.max_input_tokens:]
return outputs
results = []
N = len(batches)
i = 1
durations = []
measure_perf("Start")
generate(batches[0], warmup=True)
measure_perf("Warmup")
t_start = time.perf_counter()
with profiler:
for batch in batches:
result = generate(batch)
results.extend(result)
durations.append(measure_perf(
f"Generating batch {i} / {N}", tps=True))
i += 1
duration = time.perf_counter() - t_start
if print_logs:
print("Inference took {:.1f} secs".format(duration))
print("Saving mlperf-accuracy-file...")
acc_file = []
num_token = 0
for i, idx in enumerate(ds.index):
pred = results[i]
eos_token_id = 2
try:
ind_eos = pred.index(eos_token_id)+1
except:
ind_eos = len(pred)
pred = pred[:ind_eos]
num_token += len(pred)
acc_file.append({
"seq_id": idx,
"qsl_idx": idx,
"data": bytes(struct.pack('L' * len(pred), *pred)).hex().upper()
})
os.makedirs(args.log_path, exist_ok=True)
path = args.log_path + "/mlperf_log_accuracy.json"
with open(path, "w") as outfile:
outfile.write(json.dumps(acc_file))
estimated_performance = num_token/duration
print("Estimated performance for accuracy run is {:.1f} tokens per second".format(
estimated_performance))
print("Saved to {}".format(path))
print_stats(durations, args, len(batches))
if args.quant_config:
import habana_quantization_toolkit
habana_quantization_toolkit.finish_measurements(model)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
args = setup_parser(parser)
ds = get_ds(args)
main(args, ds)