forked from cvg/Hierarchical-Localization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualization.py
138 lines (118 loc) · 5.67 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from matplotlib import cm
import random
import numpy as np
import pickle
import pycolmap
from .utils.viz import (
plot_images, plot_keypoints, plot_matches, cm_RdGn, add_text)
from .utils.io import read_image
def visualize_sfm_2d(reconstruction, image_dir, color_by='visibility',
selected=[], n=1, seed=0, dpi=75):
assert image_dir.exists()
if not isinstance(reconstruction, pycolmap.Reconstruction):
reconstruction = pycolmap.Reconstruction(reconstruction)
if not selected:
image_ids = reconstruction.reg_image_ids()
selected = random.Random(seed).sample(
image_ids, min(n, len(image_ids)))
for i in selected:
image = reconstruction.images[i]
keypoints = np.array([p.xy for p in image.points2D])
visible = np.array([p.has_point3D() for p in image.points2D])
if color_by == 'visibility':
color = [(0, 0, 1) if v else (1, 0, 0) for v in visible]
text = f'visible: {np.count_nonzero(visible)}/{len(visible)}'
elif color_by == 'track_length':
tl = np.array([reconstruction.points3D[p.point3D_id].track.length()
if p.has_point3D() else 1 for p in image.points2D])
max_, med_ = np.max(tl), np.median(tl[tl > 1])
tl = np.log(tl)
color = cm.jet(tl / tl.max()).tolist()
text = f'max/median track length: {max_}/{med_}'
elif color_by == 'depth':
p3ids = [p.point3D_id for p in image.points2D if p.has_point3D()]
z = np.array([image.transform_to_image(
reconstruction.points3D[j].xyz)[-1] for j in p3ids])
z -= z.min()
color = cm.jet(z / np.percentile(z, 99.9))
text = f'visible: {np.count_nonzero(visible)}/{len(visible)}'
keypoints = keypoints[visible]
else:
raise NotImplementedError(f'Coloring not implemented: {color_by}.')
name = image.name
plot_images([read_image(image_dir / name)], dpi=dpi)
plot_keypoints([keypoints], colors=[color], ps=4)
add_text(0, text)
add_text(0, name, pos=(0.01, 0.01), fs=5, lcolor=None, va='bottom')
def visualize_loc(results, image_dir, reconstruction=None,
selected=[], n=1, seed=0, prefix=None, **kwargs):
assert image_dir.exists()
with open(str(results)+'_logs.pkl', 'rb') as f:
logs = pickle.load(f)
if not selected:
queries = list(logs['loc'].keys())
if prefix:
queries = [q for q in queries if q.startswith(prefix)]
selected = random.Random(seed).sample(queries, min(n, len(queries)))
if reconstruction is not None:
if not isinstance(reconstruction, pycolmap.Reconstruction):
reconstruction = pycolmap.Reconstruction(reconstruction)
for qname in selected:
loc = logs['loc'][qname]
visualize_loc_from_log(image_dir, qname, loc, reconstruction, **kwargs)
def visualize_loc_from_log(image_dir, query_name, loc, reconstruction=None,
top_k_db=2, dpi=75):
q_image = read_image(image_dir / query_name)
if loc.get('covisibility_clustering', False):
# select the first, largest cluster if the localization failed
loc = loc['log_clusters'][loc['best_cluster'] or 0]
inliers = np.array(loc['PnP_ret']['inliers'])
mkp_q = loc['keypoints_query']
n = len(loc['db'])
if reconstruction is not None:
# for each pair of query keypoint and its matched 3D point,
# we need to find its corresponding keypoint in each database image
# that observes it. We also count the number of inliers in each.
kp_idxs, kp_to_3D_to_db = loc['keypoint_index_to_db']
counts = np.zeros(n)
dbs_kp_q_db = [[] for _ in range(n)]
inliers_dbs = [[] for _ in range(n)]
for i, (inl, (p3D_id, db_idxs)) in enumerate(zip(inliers,
kp_to_3D_to_db)):
track = reconstruction.points3D[p3D_id].track
track = {el.image_id: el.point2D_idx for el in track.elements}
for db_idx in db_idxs:
counts[db_idx] += inl
kp_db = track[loc['db'][db_idx]]
dbs_kp_q_db[db_idx].append((i, kp_db))
inliers_dbs[db_idx].append(inl)
else:
# for inloc the database keypoints are already in the logs
assert 'keypoints_db' in loc
assert 'indices_db' in loc
counts = np.array([
np.sum(loc['indices_db'][inliers] == i) for i in range(n)])
# display the database images with the most inlier matches
db_sort = np.argsort(-counts)
for db_idx in db_sort[:top_k_db]:
if reconstruction is not None:
db = reconstruction.images[loc['db'][db_idx]]
db_name = db.name
db_kp_q_db = np.array(dbs_kp_q_db[db_idx])
kp_q = mkp_q[db_kp_q_db[:, 0]]
kp_db = np.array([db.points2D[i].xy for i in db_kp_q_db[:, 1]])
inliers_db = inliers_dbs[db_idx]
else:
db_name = loc['db'][db_idx]
kp_q = mkp_q[loc['indices_db'] == db_idx]
kp_db = loc['keypoints_db'][loc['indices_db'] == db_idx]
inliers_db = inliers[loc['indices_db'] == db_idx]
db_image = read_image(image_dir / db_name)
color = cm_RdGn(inliers_db).tolist()
text = f'inliers: {sum(inliers_db)}/{len(inliers_db)}'
plot_images([q_image, db_image], dpi=dpi)
plot_matches(kp_q, kp_db, color, a=0.1)
add_text(0, text)
opts = dict(pos=(0.01, 0.01), fs=5, lcolor=None, va='bottom')
add_text(0, query_name, **opts)
add_text(1, db_name, **opts)