Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

reproduced results #11

Closed
missTL opened this issue Aug 9, 2024 · 2 comments
Closed

reproduced results #11

missTL opened this issue Aug 9, 2024 · 2 comments

Comments

@missTL
Copy link

missTL commented Aug 9, 2024

Why do our reproduced results always stabilize around 65.0, compared to 66.4 in your paper. The configuration is as follows:
`base = [
'../datasets/custom_nus-3d.py',
'../base/default_runtime.py'
]

plugin = True
plugin_dir = 'projects/mmdet3d_plugin/'

If point cloud range is changed, the models should also change their point

cloud range accordingly

point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]

point_cloud_range = [-15.0, -30.0,-2.0, 15.0, 30.0, 2.0]
voxel_size = [0.15, 0.15, 4.0]
dbound=[1.0, 35.0, 0.5]

grid_config = {
'x': [-30.0, -30.0, 0.15], # useless
'y': [-15.0, -15.0, 0.15], # useless
'z': [-10, 10, 20], # useless
'depth': [1.0, 35.0, 0.5], # useful
}

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

For nuScenes we usually do 10-class detection

class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]

map has classes: divider, ped_crossing, boundary

map_classes = ['divider', 'ped_crossing','boundary']

fixed_ptsnum_per_line = 20

map_classes = ['divider',]

num_vec=50
fixed_ptsnum_per_gt_line = 20 # now only support fixed_pts > 0
fixed_ptsnum_per_pred_line = 20
eval_use_same_gt_sample_num_flag=True
num_map_classes = len(map_classes)

input_modality = dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=True)

dim = 256
pos_dim = dim//2
ffn_dim = dim*2
num_levels = 1
num_points_in_pillar = 8

bev_h_ = 50

bev_w_ = 50

bev_h_ = 200
bev_w_ = 100
queue_length = 1 # each sequence contains queue_length frames.

aux_seg_cfg = dict(
use_aux_seg=True,
bev_seg=True,
pv_seg=True,
seg_classes=1,
feat_down_sample=32,
pv_thickness=1,
)

model = dict(
type='MapTRv2',
use_grid_mask=True,
video_test_mode=False,
pretrained=dict(img='ckpts/resnet50-19c8e357.pth'),
img_backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(3,),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch'),
img_neck=dict(
type='FPN',
in_channels=[2048],
out_channels=dim,
start_level=0,
add_extra_convs='on_output',
num_outs=num_levels,
relu_before_extra_convs=True),
pts_bbox_head=dict(
type='MapTRv2Head',
bev_h=bev_h_,
bev_w=bev_w_,
num_query=900,
num_vec_one2one=100,
num_vec_one2many=600,
k_one2many=6,
num_pts_per_vec=fixed_ptsnum_per_pred_line, # one bbox
num_pts_per_gt_vec=fixed_ptsnum_per_gt_line,
dir_interval=1,
# query_embed_type='instance_pts',
query_embed_type='instance',
transform_method='minmax',
gt_shift_pts_pattern='v2',
num_classes=num_map_classes,
in_channels=dim,
sync_cls_avg_factor=True,
with_box_refine=True,
as_two_stage=False,
code_size=2,
code_weights=[1.0, 1.0, 1.0, 1.0],
aux_seg=aux_seg_cfg,
# z_cfg=z_cfg,
transformer=dict(
type='MapTRPerceptionTransformer',
rotate_prev_bev=True,
use_shift=True,
use_can_bus=True,
embed_dims=dim,
encoder=dict(
type='BEVFormerEncoder',
num_layers=3,
pc_range=point_cloud_range,
num_points_in_pillar=num_points_in_pillar,
return_intermediate=False,
with_height_refine=True,
transformerlayers=dict(
type='BEVFormerLayer',
attn_cfgs=[
dict(
type='TemporalSelfAttention',
embed_dims=dim,
num_levels=1),
dict(
type='HeightKernelAttention',
pc_range=point_cloud_range,
num_points_in_pillar=num_points_in_pillar,
attention=dict(
type='MSDeformableAttentionKernel',
embed_dims=dim,
num_heads=num_points_in_pillar,
dilation=1,
kernel_size=(2, 4),
num_levels=num_levels),
embed_dims=dim,
)
],
feedforward_channels=ffn_dim,
ffn_dropout=0.1,
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
'ffn', 'norm'))),
decoder=dict(
type='MapTRDecoder',
num_layers=6,
return_intermediate=True,
query_pos_embedding='instance',
num_pts_per_vec=fixed_ptsnum_per_pred_line,
transformerlayers=dict(
type='DetrTransformerDecoderLayer',
attn_cfgs=[
dict(
type='MultiheadAttention',
embed_dims=dim,
num_heads=8,
dropout=0.1),
dict(
type='InstancePointAttention',
embed_dims=dim,
num_levels=1,
num_pts_per_vec=fixed_ptsnum_per_pred_line,
),
],
feedforward_channels=ffn_dim,
ffn_dropout=0.1,
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
'ffn', 'norm'))
)),
bbox_coder=dict(
type='MapTRNMSFreeCoder',
# post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
post_center_range=[-20, -35, -20, -35, 20, 35, 20, 35],
pc_range=point_cloud_range,
max_num=50,
voxel_size=voxel_size,
num_classes=num_map_classes),
positional_encoding=dict(
type='LearnedPositionalEncoding',
num_feats=pos_dim,
row_num_embed=bev_h_,
col_num_embed=bev_w_,
),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=2.0),
loss_bbox=dict(type='L1Loss', loss_weight=0.0),
loss_iou=dict(type='GIoULoss', loss_weight=0.0),
loss_pts=dict(type='PtsL1Loss',
loss_weight=5.0),
loss_dir=dict(type='PtsDirCosLoss', loss_weight=0.005),
loss_seg=dict(type='SimpleLoss',
pos_weight=4.0,
loss_weight=1.0),
loss_pv_seg=dict(type='SimpleLoss',
pos_weight=1.0,
loss_weight=2.0),),
# model training and testing settings
train_cfg=dict(pts=dict(
grid_size=[512, 512, 1],
voxel_size=voxel_size,
point_cloud_range=point_cloud_range,
out_size_factor=4,
assigner=dict(
type='MapTRAssigner',
cls_cost=dict(type='FocalLossCost', weight=2.0),
reg_cost=dict(type='BBoxL1Cost', weight=0.0, box_format='xywh'),
# reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
# iou_cost=dict(type='IoUCost', weight=1.0), # Fake cost. This is just to make it compatible with DETR head.
iou_cost=dict(type='IoUCost', iou_mode='giou', weight=0.0),
pts_cost=dict(type='OrderedPtsL1Cost',
weight=5),
pc_range=point_cloud_range))))

dataset_type = 'CustomNuScenesOfflineLocalMapDataset'
data_root =
file_client_args = dict(backend='disk')

train_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=True),
dict(type='RandomScaleImageMultiViewImage', scales=[0.5]),
dict(type='PhotoMetricDistortionMultiViewImage'),
dict(type='NormalizeMultiviewImage', **img_norm_cfg),
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(type='CustomPointToMultiViewDepth', downsample=1, grid_config=grid_config),
dict(type='PadMultiViewImageDepth', size_divisor=32),
dict(type='DefaultFormatBundle3D', with_gt=False, with_label=False,class_names=map_classes),
dict(type='CustomCollect3D', keys=['img', 'gt_depth'])
]

test_pipeline = [
dict(type='LoadMultiViewImageFromFiles', to_float32=True),
dict(type='RandomScaleImageMultiViewImage', scales=[0.5]),
dict(type='NormalizeMultiviewImage', **img_norm_cfg),

dict(
    type='MultiScaleFlipAug3D',
    img_scale=(1600, 900),
    pts_scale_ratio=1,
    flip=False,
    transforms=[
        dict(type='PadMultiViewImage', size_divisor=32),
        dict(
            type='DefaultFormatBundle3D', 
            with_gt=False, 
            with_label=False,
            class_names=map_classes),
        dict(type='CustomCollect3D', keys=['img'])
    ])

]

data = dict(
samples_per_gpu=4,
workers_per_gpu=4, # TODO
train=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'nuscenes_map_infos_temporal_train.pkl',
pipeline=train_pipeline,
classes=class_names,
modality=input_modality,
aux_seg=aux_seg_cfg,
test_mode=False,
use_valid_flag=True,
bev_size=(bev_h_, bev_w_),
pc_range=point_cloud_range,
fixed_ptsnum_per_line=fixed_ptsnum_per_gt_line,
eval_use_same_gt_sample_num_flag=eval_use_same_gt_sample_num_flag,
padding_value=-10000,
map_classes=map_classes,
queue_length=queue_length,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR'),
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'nuscenes_map_infos_temporal_val.pkl',
map_ann_file=data_root + 'nuscenes_map_anns_val.json',
pipeline=test_pipeline, bev_size=(bev_h_, bev_w_),
pc_range=point_cloud_range,
fixed_ptsnum_per_line=fixed_ptsnum_per_gt_line,
eval_use_same_gt_sample_num_flag=eval_use_same_gt_sample_num_flag,
padding_value=-10000,
map_classes=map_classes,
classes=class_names, modality=input_modality, samples_per_gpu=1),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'nuscenes_map_infos_temporal_val.pkl',
map_ann_file=data_root + 'nuscenes_map_anns_val.json',
pipeline=test_pipeline,
bev_size=(bev_h_, bev_w_),
pc_range=point_cloud_range,
fixed_ptsnum_per_line=fixed_ptsnum_per_gt_line,
eval_use_same_gt_sample_num_flag=eval_use_same_gt_sample_num_flag,
padding_value=-10000,
map_classes=map_classes,
classes=class_names,
modality=input_modality),
shuffler_sampler=dict(type='DistributedGroupSampler'),
nonshuffler_sampler=dict(type='DistributedSampler')
)

optimizer = dict(
type='AdamW',
lr=6e-4,
paramwise_cfg=dict(
custom_keys={
'img_backbone': dict(lr_mult=0.1),
}),
weight_decay=0.01)

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))

learning policy

lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
min_lr_ratio=1e-3)
total_epochs = 24
evaluation = dict(interval=2, pipeline=test_pipeline, metric='chamfer',
save_best='NuscMap_chamfer/mAP', rule='greater')

total_epochs = 50

evaluation = dict(interval=1, pipeline=test_pipeline)

runner = dict(type='EpochBasedRunner', max_epochs=total_epochs)

log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
fp16 = dict(loss_scale=512.)
checkpoint_config = dict(max_keep_ckpts=1, interval=2)
find_unused_parameters=True`

@missTL
Copy link
Author

missTL commented Aug 9, 2024

Why do our reproduced results always stabilize around 65.0, compared to 66.4 in your paper.

@fishmarch
Copy link
Contributor

There may be some random for the final results. According to our experience, it is normal to get results around 66.0. How many ‘grad_norm: nan’ in your log? Too many ‘grad_norm: nan’ may cause a lower result, which should not happen.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants