-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
114 lines (94 loc) · 4.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import sys
import torch
import logging
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from apex import amp
from logger import Logger
from test_case_roc import test_case
from model import densenet3d
from data_raw import TrainDataset, TestDataset
from WarmUpLR import WarmUpLR
os.environ["CUDA_VISIBLE_DEVICES"]="0,1"
def add_weight_decay(net, l2_value, skip_list=()):
"""no L2 regularisation on the bias of the model, in optimiser"""
decay, no_decay = [], []
for name, param in net.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
print('add no l2 decay to the bias terms')
return [{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': l2_value}]
def train(train_data_loader, test_data_loader, model, optimizer, log,
warm_epoch, warmup_scheduler, train_scheduler, criterion, num_epochs = 101,
save_folder = "./checkpoint/"):
print("start training")
recall_two_max = 0
for epoch in range(1, num_epochs + 1):
# for train
running_loss = 0.0
model.train()
for index, (inputs, labels, patient_name) in enumerate(train_data_loader):
optimizer.zero_grad()
inputs, labels = inputs.cuda(), labels.cuda()
for label in labels:
if label.size() == torch.Size([2]): # == torch.tensor([[1, 1]]):
label = label[0]
print(patient_name)
inputs = inputs.unsqueeze(dim = 1).float()
inputs = F.interpolate(inputs, size = [16, 128, 128], mode = "trilinear", align_corners = False)
outputs = model(inputs)
loss = criterion(outputs, labels)
# loss.backward()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
train_scheduler.step() if epoch > warm_epoch else warmup_scheduler.step()
running_loss += loss.item()
print("{} iter, loss {}".format(index + 1, loss.item()))
print("{} epoch, loss {}".format(epoch + 1, running_loss / len(train_data_loader)))
log.info("{} epoch, loss {}".format(epoch + 1, running_loss / len(train_data_loader)))
running_loss = 0.0
recall_two = test_case(test_data_loader, model)
if recall_two > recall_two_max:
recall_two_max = recall_two
PATH = os.path.join(save_folder, "{}_epoch_{}.pth".format(epoch, recall_two))
log.info("save {} epoch.pth".format(epoch))
torch.save(model.state_dict(), PATH)
return recall_two_max
if __name__ == "__main__":
data_dir = ''
train_csv = ''
train_label_csv = ''
test_csv = ''
test_label_csv = ''
train_data_train = TrainDataset(data_dir, train_csv, train_label_csv)
train_data_loader = DataLoader(dataset = train_data_train, batch_size = 70, shuffle = True, num_workers = 12)
test_data_test = TestDataset(data_dir, test_csv, test_label_csv)
test_data_loader = DataLoader(dataset = test_data_test, batch_size = 70, shuffle = False, num_workers = 12)
model = densenet3d().cuda()
weight = torch.from_numpy(np.array([[0.2, 0.2, 0.4, 0.2]])).float()
criterion = nn.CrossEntropyLoss(weight=weight).cuda()
params = add_weight_decay(model, 4e-5)
optimizer = optim.SGD(params, lr=0.01, momentum=0.9)
model, optimizer = amp.initialize(model, optimizer)
model = nn.DataParallel(model)
num_epochs = 100
iter_per_epoch, warm_epoch = len(train_data_loader), 5
warmup_scheduler = WarmUpLR(optimizer, iter_per_epoch * warm_epoch)
train_scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer, (num_epochs - warm_epoch) * iter_per_epoch)
logfile = "./log_n1.log"
os.remove(logfile) if os.path.exists(logfile) else None
sys.stdout = Logger(logfile)
log = logging.getLogger()
train(train_data_loader, test_data_loader, model, optimizer, log,
warm_epoch, warmup_scheduler, train_scheduler, criterion, num_epochs)