diff --git a/src/num/theories/cv_compute/selftest.sml b/src/num/theories/cv_compute/selftest.sml index 40367ca561..6478c9333a 100644 --- a/src/num/theories/cv_compute/selftest.sml +++ b/src/num/theories/cv_compute/selftest.sml @@ -6,14 +6,14 @@ fun simp ths = simpLib.ASM_SIMP_TAC (BasicProvers.srw_ss()) ths val M = “(λf n. cv_if (cv_lt n (cv$Num 1)) (cv$Num 1) (cv_mul n (f (cv_sub n (cv$Num 1)))))” val factc_def0 = new_definition("factc_def0", - “factc = WFREC (measure cv_size_alt) ^M”); + “factc = WFREC (measure cv_size) ^M”); val restrict_lemma = Q.prove( - ‘^M (RESTRICT factc (measure cv_size_alt) x) x = ^M factc x’, + ‘^M (RESTRICT factc (measure cv_size) x) x = ^M factc x’, BETA_TAC >> irule cv_if_cong >> simp[] >> Q.SPEC_THEN ‘x’ STRUCT_CASES_TAC (TypeBase.nchotomy_of “:cv”) >> simp[] >> IF_CASES_TAC >> simp[c2b_def] >> - simp[relationTheory.RESTRICT_DEF, cv_size_alt_def] >> + simp[relationTheory.RESTRICT_DEF, cv_size_def] >> Q.RENAME_TAC [‘n <> 0’] >> reverse $ Q.SUBGOAL_THEN ‘n - 1 < n’ ASSUME_TAC >- simp[] >> irule SUB_LESS >> pop_assum mp_tac >> @@ -21,7 +21,7 @@ val restrict_lemma = Q.prove( simp[ONE, LESS_EQ_MONO, ZERO_LESS_EQ]); val factc_def = MATCH_MP relationTheory.WFREC_THM - (Q.ISPEC ‘cv_size_alt’ prim_recTheory.WF_measure) + (Q.ISPEC ‘cv_size’ prim_recTheory.WF_measure) |> ISPEC M |> REWRITE_RULE[restrict_lemma, GSYM factc_def0] |> BETA_RULE