-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
186 lines (144 loc) · 6.44 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
import os
class CalibInfo():
"""Process KITTI calibration file"""
def __init__(self, filepath):
self.data = self._load_calib(filepath)
def get_cam_param(self):
return self.data['P2']
def get_baseline(self):
T = (self.data['P2'] - self.data['P3']
).dot(np.array([[0], [0], [0], [1]], dtype=np.float32))
return np.sqrt(np.sum((T * T)))
def _load_calib(self, filepath):
rawdata = self._read_calib_file(filepath)
data = {}
P0 = np.reshape(rawdata['P0'], (3, 4))
P1 = np.reshape(rawdata['P1'], (3, 4))
P2 = np.reshape(rawdata['P2'], (3, 4))
P3 = np.reshape(rawdata['P3'], (3, 4))
R0_rect = np.reshape(rawdata['R0_rect'], (3, 3))
Tr_velo_to_cam = np.reshape(rawdata['Tr_velo_to_cam'], (3, 4))
data['P0'] = P0
data['P1'] = P1
data['P2'] = P2
data['P3'] = P3
data['R0_rect'] = R0_rect
data['Tr_velo_to_cam'] = Tr_velo_to_cam
return data
def _read_calib_file(self, filepath):
"""Read in a calibration file and parse into a dictionary"""
data = {}
with open(filepath, 'r') as f:
for line in f.readlines():
key, value = line.split(':', 1)
# The only non-float values in these files are dates, which
# we don't care about anyway
try:
data[key] = np.array([float(x) for x in value.split()])
except ValueError:
pass
return data
class NIM(nn.Module):
"""Normal Inference Module"""
def __init__(self):
super(NIM, self).__init__()
def forward(self, depth, calib, sign_filter):
"""Generate surface normal estimation from depth images
Args:
depth (torch.Tensor): depth image
calib (CalibInfo): calibration parameters
sign_filter (bool): if True, our NIM will additionally utilize a sign filter
Returns:
torch.Tensor: surface normal estimation
"""
camParam = torch.tensor(calib.get_cam_param(), dtype=torch.float32)
h, w = depth.size()
v_map, u_map = torch.meshgrid(torch.arange(h), torch.arange(w))
v_map = v_map.type(torch.float32)
u_map = u_map.type(torch.float32)
Z = depth # h, w
Y = Z * (v_map - camParam[1, 2]) / camParam[0, 0] # h, w
X = Z * (u_map - camParam[0, 2]) / camParam[0, 0] # h, w
Z[Y <= 0] = 0
Y[Y <= 0] = 0
Z[torch.isnan(Z)] = 0
D = torch.ones(h, w) / Z # h, w
Gx = torch.tensor([[0, 0, 0], [-1, 0, 1], [0, 0, 0]],
dtype=torch.float32)
Gy = torch.tensor([[0, -1, 0], [0, 0, 0], [0, 1, 0]],
dtype=torch.float32)
Gu = F.conv2d(D.view(1, 1, h, w), Gx.view(1, 1, 3, 3), padding=1)
Gv = F.conv2d(D.view(1, 1, h, w), Gy.view(1, 1, 3, 3), padding=1)
nx_t = Gu * camParam[0, 0] # 1, 1, h, w
ny_t = Gv * camParam[1, 1] # 1, 1, h, w
phi = torch.atan(ny_t / nx_t) + torch.ones([1, 1, h, w]) * 3.141592657
a = torch.cos(phi)
b = torch.sin(phi)
diffKernelArray = torch.tensor([[0, -1, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, -1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, -1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, -1, 0]], dtype=torch.float32)
nx_volume = torch.zeros((1, 4, h, w), dtype=torch.float32)
ny_volume = torch.zeros((1, 4, h, w), dtype=torch.float32)
nz_volume = torch.zeros((1, 4, h, w), dtype=torch.float32)
for i in range(4):
diffKernel = diffKernelArray[i].view(1, 1, 3, 3)
X_d = F.conv2d(X.view(1, 1, h, w), diffKernel, padding=1)
Y_d = F.conv2d(Y.view(1, 1, h, w), diffKernel, padding=1)
Z_d = F.conv2d(Z.view(1, 1, h, w), diffKernel, padding=1)
nz_i = -(nx_t * X_d + ny_t * Y_d) / Z_d
norm = torch.sqrt(nx_t * nx_t + ny_t * ny_t + nz_i * nz_i)
nx_t_i = nx_t / norm
ny_t_i = ny_t / norm
nz_t_i = nz_i / norm
nx_t_i[torch.isnan(nx_t_i)] = 0
ny_t_i[torch.isnan(ny_t_i)] = 0
nz_t_i[torch.isnan(nz_t_i)] = 0
nx_volume[0, i, :, :] = nx_t_i
ny_volume[0, i, :, :] = ny_t_i
nz_volume[0, i, :, :] = nz_t_i
if sign_filter:
nz_volume_pos = torch.sum(nz_volume > 0, dim=1, keepdim=True)
nz_volume_neg = torch.sum(nz_volume < 0, dim=1, keepdim=True)
pos_mask = (nz_volume_pos >= nz_volume_neg) * (nz_volume > 0)
neg_mask = (nz_volume_pos < nz_volume_neg) * (nz_volume < 0)
final_mask = pos_mask | neg_mask
nx_volume *= final_mask
ny_volume *= final_mask
nz_volume *= final_mask
theta = torch.atan((torch.sum(nx_volume, 1) * a +
torch.sum(ny_volume, 1) * b) / torch.sum(nz_volume, 1))
nx = torch.sin(theta) * torch.cos(phi)
ny = torch.sin(theta) * torch.sin(phi)
nz = torch.cos(theta)
nx[torch.isnan(nz)] = 0
ny[torch.isnan(nz)] = 0
nz[torch.isnan(nz)] = -1
sign_map = torch.ones((1, 1, h, w), dtype=torch.float32)
sign_map[ny > 0] = -1
nx = (nx * sign_map).squeeze(dim=0)
ny = (ny * sign_map).squeeze(dim=0)
nz = (nz * sign_map).squeeze(dim=0)
return torch.cat([nx, ny, nz], dim=0)
def normal_visualization(normal):
normal_vis = (1 + normal) / 2
return normal_vis
if __name__ == '__main__':
example_name = 'uu_000000'
depth = cv2.imread(os.path.join('examples', 'depth_u16',
example_name + '.png'), cv2.IMREAD_ANYDEPTH).astype(np.float32)/1000
calib = CalibInfo(os.path.join('examples', 'calib', example_name + '.txt'))
depth = torch.tensor(depth)
model = NIM()
normal = model(depth, calib, sign_filter=True)
normal = normal.cpu().numpy()
normal_vis = normal_visualization(normal)
if not os.path.exists(os.path.join('examples', 'normal')):
os.makedirs(os.path.join('examples', 'normal'))
cv2.imwrite(os.path.join('examples', 'normal', example_name + '.png'), cv2.cvtColor(
normal_vis.transpose([1, 2, 0])*255, cv2.COLOR_RGB2BGR))