-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilder.py
72 lines (63 loc) · 2.49 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from typing import List, Callable, Dict
import numpy as np
from .utils import find_object
def build(name, *args, **kwargs):
obj = find_object(name)
return obj(*args, **kwargs)
class Sequential(object):
"""
A set of classes runs in sequential. All the input_output should be directly fed in sequential.
"""
def __init__(self, cfg_list:List[Dict], **common_keywords):
self.children:List[Callable] = []
for item in cfg_list:
tmp = common_keywords.copy()
tmp.update(item)
self.children.append(build(**tmp))
def __call__(self, *args, **kwargs):
for i, child in enumerate(self.children):
if i == 0:
result = child(*args, **kwargs)
else:
if isinstance(result, tuple):
result = child(*result)
else:
result = child(result)
return result
class Parallel(object):
"""
A set of classes runs in parallel. All the inputs are the same, all outputs are contat into a list.
"""
def __init__(self, cfg_list:List[Dict], **common_keywords):
self.children:List[Callable] = []
for item in cfg_list:
tmp = common_keywords.copy()
tmp.update(item)
self.children.append(build(**tmp))
def __call__(self, *args, **kwargs):
results = []
for i, child in enumerate(self.children):
results.append(child(*args, **kwargs))
return results
class Shuffle(object):
"""
A set of classes runs in random sequence. All the input_output should be directly fed in sequential.
"""
def __init__(self, cfg_list:List[Dict], **common_keywords):
self.children:List[Callable] = []
for item in cfg_list:
tmp = common_keywords.copy()
tmp.update(item)
self.children.append(build(**tmp))
def __call__(self, *args, **kwargs):
# We aim to keep the original order of the initialized transforms in self.transforms, so we only randomize the indexes.
shuffled_indexes = np.random.permutation(len(self.children))
for i, index in enumerate(shuffled_indexes):
if i == 0:
result = self.children[index](*args, **kwargs)
else:
if isinstance(result, tuple):
result = self.children[index](*result)
else:
result = self.children[index](result)
return result