-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
94 lines (73 loc) · 2.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
__import__("pysqlite3")
import sys
sys.modules["sqlite3"] = sys.modules.pop("pysqlite3")
from dotenv import load_dotenv
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
import streamlit as st
import tempfile
import os
from streamlit_extras.buy_me_a_coffee import button
from langchain.callbacks.base import BaseCallbackHandler
class StreamHandler(BaseCallbackHandler):
def __init__(self, container, initial_text=""):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text)
button(username="statsholic", floating=True, width=211)
load_dotenv()
st.title("CHATPDF")
st.write("---")
def pdf_to_document(uploaded_file):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, uploaded_file.name)
with open(temp_filepath, "wb") as f:
f.write(uploaded_file.getvalue())
loader = PyPDFLoader(temp_filepath)
pages = loader.load_and_split()
return pages
uploaded_file = None
if not uploaded_file:
uploaded_file = st.file_uploader("Choose your PDF file.", type=["pdf"])
st.write("---")
if uploaded_file:
pages = pdf_to_document(uploaded_file)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=300, chunk_overlap=30, length_function=len, is_separator_regex=False
)
texts = text_splitter.split_documents(pages)
embeddings_model = OpenAIEmbeddings()
db = Chroma.from_documents(texts, embeddings_model)
st.header("Ask about the PDF")
with st.form(key="query_form"):
question = st.text_input("Your question")
# 'Ask' button
submit_button = st.form_submit_button(label="Ask")
# If the form is submitted (either by pressing enter or clicking 'Ask')
if submit_button:
with st.spinner("Wait for it..."):
chat_box = st.empty()
stream_handler = StreamHandler(chat_box)
llm = ChatOpenAI(
model_name="gpt-3.5-turbo-0125",
temperature=0,
streaming=True,
callbacks=[stream_handler],
)
qa_chain = RetrievalQA.from_chain_type(
retriever=db.as_retriever(), llm=llm
)
answer = qa_chain({"query": question})
# st.write(answer["result"])
print(answer)
# relevent documents
# retriver_from_llm = MultiQueryRetriever.from_llm(retriever=db.as_retriever(), llm=llm)
# relevant_documents = retriver_from_llm.get_relevant_documents(query=question, top_k=1)
# print(len(relevant_documents))
# print(relevant_documents)