forked from sheikhshafayat/ee488b_face
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEmbedNet.py
206 lines (143 loc) · 6.45 KB
/
EmbedNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/python
#-*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy, math, pdb, sys
import time, importlib
from DatasetLoader import test_dataset_loader
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
class EmbedNet2(nn.Module):
def __init__(self, model, optimizer, trainfunc, nPerClass, **kwargs):
super(EmbedNet2, self).__init__();
## __S__ is the embedding model
EmbedNetModel = importlib.import_module('models.'+model).__getattribute__('MainModel')
self.__S__ = EmbedNetModel(**kwargs);
## __L__ is the classifier plus the loss function
LossFunction = importlib.import_module('loss.'+trainfunc).__getattribute__('LossFunction')
self.__L__ = LossFunction(**kwargs);
## Number of examples per identity per batch
self.nPerClass = nPerClass
def forward(self, data, label=None):
data = data.reshape(-1,data.size()[-3],data.size()[-2],data.size()[-1])
outp = self.__S__.forward(data)
if label == None:
return outp
else:
outp = outp.reshape(self.nPerClass,-1,outp.size()[-1]).transpose(1,0).squeeze(1)
nloss = self.__L__.forward(outp,label)
return nloss
class ModelTrainer(object):
def __init__(self, embed_model, optimizer, scheduler, mixedprec, **kwargs):
self.__model__ = embed_model
## Optimizer (e.g. Adam or SGD)
Optimizer = importlib.import_module('optimizer.'+optimizer).__getattribute__('Optimizer')
self.__optimizer__ = Optimizer([
{'params': self.__model__.__S__.parameters()},
{'params': self.__model__.__L__.parameters(), 'lr': 2e-6}
], **kwargs)
## Learning rate scheduler
Scheduler = importlib.import_module('scheduler.'+scheduler).__getattribute__('Scheduler')
self.__scheduler__, self.lr_step = Scheduler(self.__optimizer__, **kwargs)
## For mixed precision training
self.scaler = GradScaler()
self.mixedprec = mixedprec
assert self.lr_step in ['epoch', 'iteration']
# ## ===== ===== ===== ===== ===== ===== ===== =====
# ## Train network
# ## ===== ===== ===== ===== ===== ===== ===== =====
def train_network(self, loader):
self.__model__.train();
stepsize = loader.batch_size;
counter = 0;
index = 0;
loss = 0;
with tqdm(loader, unit="batch") as tepoch:
for data, label in tepoch:
tepoch.total = tepoch.__len__()
data = data.transpose(1,0)
## Reset gradients
self.__model__.zero_grad();
## Forward and backward passes
if self.mixedprec:
with autocast():
nloss = self.__model__(data.cuda(), label.cuda())
self.scaler.scale(nloss).backward();
self.scaler.step(self.__optimizer__);
self.scaler.update();
else:
nloss = self.__model__(data.cuda(), label.cuda())
nloss.backward();
self.__optimizer__.step();
loss += nloss.detach().cpu().item();
counter += 1;
index += stepsize;
# Print statistics to progress bar
tepoch.set_postfix(loss=loss/counter)
if self.lr_step == 'iteration': self.__scheduler__.step()
if self.lr_step == 'epoch': self.__scheduler__.step()
return (loss/counter);
## ===== ===== ===== ===== ===== ===== ===== =====
## Evaluate from list
## ===== ===== ===== ===== ===== ===== ===== =====
def evaluateFromList(self, test_list, test_path, nDataLoaderThread, transform, print_interval=100, num_eval=10, **kwargs):
self.__model__.eval();
feats = {}
## Read all lines
with open(test_list) as f:
lines = f.readlines()
## Get a list of unique file names
files = sum([x.strip().split(',')[-2:] for x in lines],[])
setfiles = list(set(files))
setfiles.sort()
## Define test data loader
test_dataset = test_dataset_loader(setfiles, test_path, transform=transform, num_eval=num_eval, **kwargs)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=nDataLoaderThread,
drop_last=False,
)
print('Generating embeddings')
## Extract features for every image
for data in tqdm(test_loader):
inp1 = data[0][0].cuda()
ref_feat = self.__model__(inp1).detach().cpu()
feats[data[1][0]] = ref_feat
all_scores = [];
all_labels = [];
all_trials = []
print('Computing similarities')
## Read files and compute all scores
for line in tqdm(lines):
data = line.strip().split(',');
ref_feat = feats[data[1]]
com_feat = feats[data[2]]
score = F.cosine_similarity(ref_feat, com_feat)
all_scores.append(score.item());
all_labels.append(int(data[0]));
all_trials.append(data[1] + "," + data[2])
return (all_scores, all_labels, all_trials)
## ===== ===== ===== ===== ===== ===== ===== =====
## Save parameters
## ===== ===== ===== ===== ===== ===== ===== =====
def saveParameters(self, path):
torch.save(self.__model__.state_dict(), path);
## ===== ===== ===== ===== ===== ===== ===== =====
## Load parameters
## ===== ===== ===== ===== ===== ===== ===== =====
def loadParameters(self, path):
self_state = self.__model__.state_dict();
loaded_state = torch.load(path);
for name, param in loaded_state.items():
origname = name;
if name not in self_state:
if name not in self_state:
print("{} is not in the model.".format(origname));
continue;
if self_state[name].size() != loaded_state[origname].size():
print("Wrong parameter length: {}, model: {}, loaded: {}".format(origname, self_state[name].size(), loaded_state[origname].size()));
continue;
self_state[name].copy_(param);