-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetuner.py
370 lines (311 loc) · 11.3 KB
/
finetuner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from fairchem.core.preprocessing import AtomsToGraphs
from fairchem.core.datasets import LmdbDataset
from fairchem.core.common.tutorial_utils import generate_yml_config
from fairchem.core.models.model_registry import model_name_to_local_file
from fairchem.core.models.model_registry import available_pretrained_models
from ase import Atoms
from ase.calculators.singlepoint import SinglePointCalculator
from ase.db import connect
from ase.io import read
import numpy as np
import lmdb
import pickle
from tqdm import tqdm
import torch
import os
import argparse
import time
import subprocess
from abc import ABC, abstractmethod
from typing import List, Union
import pathlib
'''
Total assembly of
Prepare dataset - Make configuration file - Fine-tuning
Code structure is updated, different with previous files
If you want to modify this one, I recommend do it after reading other files
ykt's parameter pick:
Dataset: lmdb
batch_size: 16
eval_every: 10
'''
class TrajLoader:
def load_file(
self,
path: str
) -> List[ase.Atoms]:
traj = read(self.path, index=':')
return traj
class FileMaker(ABC):
@abstractmethod
def make_file(
self,
name: str
) -> List[Environment]:
pass
class LmdbMaker(FileMaker):
def make_file(
self,
name: str
) -> List[Environment]:
lmdb_train = lmdb.open(
f"data/{name}_train.lmdb",
map_size=1099511627776 * 2,
subdir=False,
meminit=False,
map_async=True,
)
lmdb_test = lmdb.open(
f"data/{name}_test.lmdb",
map_size=1099511627776 * 2,
subdir=False,
meminit=False,
map_async=True,
)
lmdb_val = lmdb.open(
f"data/{name}_val.lmdb",
map_size=1099511627776 * 2,
subdir=False,
meminit=False,
map_async=True,
)
return [lmdb_train, lmdb_test, lmdb_val]
class AsedbMaker(FileMaker):
def make_file(
self,
name: str
) -> List[Environment]:
asedb_train = connect(
f"data/{name}_train.db"
)
asedb_test = connect(
f"data/{name}_test.db"
)
asedb_val = connect(
f"data/{name}_val.db"
)
return [asedb_train, asedb_test, asedb_val]
class Tagger:
def __init__(self, ads: List[str] = None):
if ads is None:
ads = ['H', 'C', 'O', 'He', 'N']
self.ads = ads
def _set_and_get_tags(self, atoms: ase.Atoms) -> atoms.tags:
atoms.set_tags(np.ones(len(atoms))
if atoms.constraints:
for idx in atoms.constraints[0].index:
atoms[idx].tag = 0
for atom in atoms:
if atom.symbol in self.ads:
atom.tag = 2
return atoms.get_tags()
class Converter(ABC):
def __init__(self, tagger: Tagger = None) -> None:
self.tagger = tagger if tagger is not None else Tagger()
self.a2g = AtomsToGraphs(
max_neigh=50,
radius=6,
r_energy=True,
r_forces=True,
r_distances=False,
r_fixed=True
)
@abstractmethod
def convert(self, atoms: ase.Atoms) -> Union[torch_geometric.data.data.Data, ase.Atoms]:
pass
class LmdbConverter(Converter):
def convert(self, atoms: ase.Atoms) -> torch_geometric.data.data.Data:
data = self.a2g.convert(atoms)
data.sid = torch.LongTensor([0])
data.tags = torch.LongTensor(self.tagger._set_and_get_tags(atoms))
return data
class AsedbConverter(Converter):
def convert(self, atoms: ase.Atoms) -> ase.Atoms:
atoms.set_tags(self.tagger._set_and_get_tags(atoms))
calc = atoms.calc
energy = calc.get_potential_energy()
forces = (calc.get_forces()).tolist()
atoms.calc = SinglePointCalculator(atoms, energy=energy, forces=forces)
return atoms
class DataSaver(ABC):
@abstractmethod
def save_data(self,
path: Union[Environment, ase.db.sqlite.SQLite3Database],
data: Union[torch_geometric.data.data.Data, ase.atoms],
fid: int
) -> None:
pass
class LmdbSaver(DataSaver):
def save_data(self,
path: Environmnet,
data: torch_geometric.data.data.Data,
fid: int
) -> None:
txn = path.begin(write=True)
txn.put(f"{fid}".encode("ascii"), pickle.dumps(data, protocol=-1))
txn.commit()
class AsedbSaver(DataSaver):
def save_data(self,
path: ase.db.sqlite.SQLite3Database,
data: ase.atoms,
fid: int
) -> None:
path.write(data)
class Splitter:
def __init__(
self,
converter: Converter,
data_saver: DataSaver
) -> None:
self.converter = converter
self.data_saver = data_saver
def split(
self,
environ_list: List[Environment],
traj: List[ase.Atoms]
) -> None:
fid
for idx, atoms in tqdm(enumerate(traj), total = len(traj)):
i = np.random.randint(100)
data = self.converter.convert(atoms)
if i<=80:
self.data_saver.save_data(path=environ_list[0], data=data, fid=fid[0])
fid[0] += 1
if i<=90 and i>=81:
self.data_saver.save_data(path=environ_list[1], data=data, fid=fid[1])
fid[1] += 1
if i>=91:
self.data_saver.save_data(path=environ_list[2], data=data, fid=fid[2])
fid[2] +=1
class YmlMaker:
def show_and_get_model_name(self) -> None:
s2ef = []
for name in available_pretrained_models:
if "S2EF" in name:
s2ef.append(name)
print("**Available S2EF models:")
print("(IS2RE not supported)")
print(*s2ef, sep='\n')
print("**Type a model you want to Fine-tune")
while True:
self.model_name = input()
if self.model_name in names:
break
else:
print(f"Typed {self.model_name} is not in available models")
self.checkpoint = model_name_to_local_file(self.model_name, local_cache='./')
return self.checkpoint
def make_yml(self,
db: str,
name: str
) -> pathlib.PosixPath:
if db=='ase':
yml = generate_yml_config(self.checkpoint, 'config.yml',
delete=['slurm', 'cmd', 'logger', 'task', 'model_attributes',
'dataset', 'test_dataset', 'val_dataset'],
update={'gpus': 1,
'task.dataset': 'ase_db',
'optim.eval_every': 10,
'optim.max_epochs': 1,
'optim.batch_size': 16,
'logger': 'tensorboard',
'dataset.train.src': f'./data/{name}_train.db',
'dataset.train.format': 'ase_db',
'dataset.train.a2g_args.r_energy': True,
'dataset.train.a2g_args.r_forces': True,
'dataset.val.src': f'./data/{name}_val.db',
'dataset.val.format': 'ase_db',
'dataset.val.a2g_args.r_energy': True,
'dataset.val.a2g_args.r_forces': True,
})
else:
yml = generate_yml_config(self.checkpoint, 'config.yml',
delete=['slurm', 'cmd', 'logger', 'task', 'model_attributes',
'dataset', 'test_dataset', 'val_dataset'],
update={'gpus': 1,
'task.dataset': 'lmdb',
'optim.eval_every': 10,
'optim.max_epochs': 1,
'optim.batch_size': 16,
'logger': 'tensorboard',
'dataset.train.src': f'./data/{name}_train.lmdb',
'dataset.train.format': 'lmdb',
'dataset.train.a2g_args.r_energy': True,
'dataset.train.a2g_args.r_forces': True,
'dataset.val.src': f'./data/{name}_val.lmdb',
'dataset.val.format': 'lmdb',
'dataset.val.a2g_args.r_energy': True,
'dataset.val.a2g_args.r_forces': True,
return yml
class ConsoleTyper:
def run_command(self,
checkpoint,
yml: pathlib.PosixPath,
name: str
) -> None:
t0 = time.time()
command = [
'python',
'main.py',
'--mode', 'train',
'--config-yml', yml,
'--checkpoint', checkpoint,
'--run-dir', 'fine-tuning',
'--identifier', f'{name}',
'--amp'
]
with open('train.txt', 'w') as outfile:
subprocess.run(command, stdout=outfile, stderr=subprocess.STDOUT)
print(f'Elapsed time = {time.time() - t0:1.1f} seconds')
with open('train.txt', 'r') as file:
for line in file:
if "checkpoint_dir:" in line:
cpline = line.strip()
break
cpdir = cpline[0].split(':')[-1].strip()
print(cpdir)
class Processor:
def __init__(
self,
traj_loader: TrajLoader,
file_maker: FileMaker,
splitter: Splitter
yml_maker: YmlMaker,
console_typer: ConsoleTyper
) -> None:
self.traj_loader = traj_loader
self.file_maker = file_maker
self.splitter = splitter
self.yml_maker = yml_maker
self.console_typer = console_typer
def process(
self,
db: str,
path: str,
name: str,
) -> None:
traj = self.traj_loader.load_file(path)
environ_list = self.file_maker.make_file(name)
self.splitter.split(traj=traj, environ_list=environ_list)
checkpoint = yml_maker.show_and_get_model_name()
yml = yml_maker.make_yml(db=db, name=name)
console_typer.run_command(checkpoint=checkpoint, yml=yml, name=name)
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--name", dest="name", action="store")
parser.add_argument("-d", "--db", dest="db", action="store")
parser.add_argument("-p", "--path", dest="path", action="store")
args = parser.parse_args()
converter = Converter()
data_saver = DataSaver()
splitter = Splitter(
converter=converter,
data_saver=data_saver
)
processor = Processor(
traj_loader=TrajLoader(),
file_maker=FileMaker(),
splitter=splitter,
yml_maker=YmlMaker(),
console_typer=ConsoleTyper()
)
processor.process(db="lmdb", path="", name="ytk")