-
Notifications
You must be signed in to change notification settings - Fork 2
/
_pkgdown.yml
82 lines (80 loc) · 2.18 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
templates:
params:
bootswatch: readable
navbar:
title: "missSBM"
type: inverse
left:
- icon: fa-home
- text: "Home"
href: index.html
- text: "Reference"
href: "reference/index.html"
- text: "Articles"
menu:
- text: "A case study on the war networks"
href: articles/case_study_war_networks.html
- text: "Changelog"
href: news/index.html
right:
- icon: fa-github
- text: github
href: https://github.com/jchiquet/missSBM
reference:
- title: 'Top-level fitting functions'
desc: >
Main functions for estimating and sampling from an SBM with missing data
contents:
- '`estimateMissSBM`'
- '`observeNetwork`'
- title: 'Main classes of objects'
desc: >
Description of objects missSBM_fit and missSBM_collection. The class missSBM_fit
is the more central class of object, embedding fits for both the SBM and the sampling model.
The class missSBM_collection defines objects for storing a collection of missSBM_fit,
resulting from the the top-level function estimateMissSBM().
contents:
- '`missSBM_fit`'
- '`coef.missSBM_fit`'
- '`fitted.missSBM_fit`'
- '`predict.missSBM_fit`'
- '`plot.missSBM_fit`'
- '`missSBM_collection`'
- title: Data sets
desc: ~
contents:
- '`war`'
- '`frenchblog2007`'
- '`er_network`'
- title: internal
desc: ~
contents:
- '`SimpleSBM_fit`'
- '`SimpleSBM_fit_MNAR`'
- '`SimpleSBM_fit_noCov`'
- '`SimpleSBM_fit_withCov`'
- '`blockDyadSampler`'
- '`blockDyadSampling_fit`'
- '`blockNodeSampler`'
- '`blockNodeSampling_fit`'
- '`covarDyadSampling_fit`'
- '`covarNodeSampling_fit`'
- '`degreeSampler`'
- '`degreeSampling_fit`'
- '`doubleStandardSampler`'
- '`doubleStandardSampling_fit`'
- '`dyadSampler`'
- '`dyadSampling_fit`'
- '`missSBM`'
- '`networkSampler`'
- '`networkSampling`'
- '`networkSamplingDyads_fit`'
- '`networkSamplingNodes_fit`'
- '`nodeSampler`'
- '`nodeSampling_fit`'
- '`partlyObservedNetwork`'
- '`simpleDyadSampler`'
- '`simpleNodeSampler`'
- '`snowballSampler`'
- '`summary.missSBM_fit`'
- '`l1_similarity`'