-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDESCRIPTION
71 lines (71 loc) · 2.34 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Package: missSBM
Type: Package
Title: Handling Missing Data in Stochastic Block Models
Version: 1.0.4
Authors@R: c(
person("Julien", "Chiquet", role = c("aut", "cre"), email = "[email protected]",
comment = c(ORCID = "0000-0002-3629-3429")),
person("Pierre", "Barbillon", role = "aut", email = "[email protected]",
comment = c(ORCID = "0000-0002-7766-7693")),
person("Timothée", "Tabouy", role = "aut", email = "[email protected]"),
person("Jean-Benoist", "Léger", role = "ctb", email = "[email protected]", comment = "provided C++ implementaion of K-means"),
person("François", "Gindraud", role = "ctb", email = "[email protected]", comment = "provided C++ interface to NLopt"),
person("großBM team", role = c("ctb"))
)
Maintainer: Julien Chiquet <[email protected]>
Description: When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0
due to missing information between node pairs), it is possible to account for the underlying process
that generates those NAs. 'missSBM', presented in 'Barbillon, Chiquet and Tabouy' (2022) <doi:10.18637/jss.v101.i12>,
adjusts the popular stochastic block model from network data sampled under various missing data conditions,
as described in 'Tabouy, Barbillon and Chiquet' (2019) <doi:10.1080/01621459.2018.1562934>.
URL: https://grosssbm.github.io/missSBM/
BugReports: https://github.com/grossSBM/missSBM/issues
License: GPL-3
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3
Depends: R (>= 3.4.0)
Imports:
Rcpp,
methods,
igraph,
nloptr,
ggplot2,
future.apply,
R6,
rlang,
sbm,
magrittr,
Matrix,
RSpectra
LinkingTo: Rcpp, RcppArmadillo, nloptr
Collate:
'utils_missSBM.R'
'R6Class-networkSampling.R'
'R6Class-networkSampling_fit.R'
'R6Class-simpleSBM_fit.R'
'R6Class-missSBM_fit.R'
'R6Class-missSBM_collection.R'
'R6Class-networkSampler.R'
'R6Class-partlyObservedNetwork.R'
'RcppExports.R'
'er_network.R'
'estimateMissSBM.R'
'frenchblog2007.R'
'kmeans.R'
'missSBM-package.R'
'observeNetwork.R'
'war.R'
Suggests:
aricode,
blockmodels,
corrplot,
future,
testthat (>= 2.1.0),
covr,
knitr,
rmarkdown,
spelling
VignetteBuilder: knitr
Language: en-US