forked from CPJKU/madmom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_evaluation_tempo.py
318 lines (277 loc) · 11.8 KB
/
test_evaluation_tempo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# encoding: utf-8
# pylint: skip-file
"""
This file contains tests for the madmom.evaluation.tempo module.
"""
from __future__ import absolute_import, division, print_function
import math
import unittest
from madmom.evaluation.tempo import *
from . import ANNOTATIONS_PATH, DETECTIONS_PATH
ANNOTATIONS = np.asarray([[87.5, 0.7], [175, 0.3]])
ANN_TEMPI = np.asarray([87.5, 175])
ANN_STRENGTHS = np.asarray([0.7, 0.3])
DETECTIONS = np.asarray([[176.47, 0.6], [117.65, 0.4]])
DET_TEMPI = np.asarray([176.47, 117.65])
DET_STRENGTHS = np.asarray([0.6, 0.4])
# test functions
class TestSortTempoFunction(unittest.TestCase):
def test_sort(self):
result = sort_tempo([[100, 0.8], [50, 0.2]])
self.assertTrue(np.allclose(result, [[100, 0.8], [50, 0.2]]))
result = sort_tempo([[50, 0.2], [100, 0.8]])
self.assertTrue(np.allclose(result, [[100, 0.8], [50, 0.2]]))
# tempo order of 50 and 100 bpm must be kept
result = sort_tempo([[100, 0.2], [50, 0.2], [75, 0.6]])
self.assertTrue(np.allclose(result,
[[75, 0.6], [100, 0.2], [50, 0.2]]))
def test_error(self):
with self.assertRaises(ValueError):
sort_tempo([120, 60])
class TestConstantsClass(unittest.TestCase):
def test_types(self):
self.assertIsInstance(TOLERANCE, float)
self.assertIsInstance(DOUBLE, bool)
self.assertIsInstance(TRIPLE, bool)
def test_values(self):
self.assertEqual(TOLERANCE, 0.04)
self.assertEqual(DOUBLE, True)
self.assertEqual(TRIPLE, True)
class TestTempoEvaluationFunction(unittest.TestCase):
def test_types(self):
scores = tempo_evaluation(DETECTIONS, ANNOTATIONS)
self.assertIsInstance(scores, tuple)
# detections / annotations must be correct type
scores = tempo_evaluation([], [])
self.assertIsInstance(scores, tuple)
scores = tempo_evaluation({}, {})
self.assertIsInstance(scores, tuple)
# tolerance must be correct type
scores = tempo_evaluation(DETECTIONS, ANNOTATIONS, int(1.2))
self.assertIsInstance(scores, tuple)
def test_errors(self):
# detections / annotations must not be None
with self.assertRaises(TypeError):
tempo_evaluation(None, ANN_TEMPI)
with self.assertRaises(TypeError):
tempo_evaluation(DETECTIONS, None)
# tolerance must be > 0
with self.assertRaises(ValueError):
tempo_evaluation(DETECTIONS, ANNOTATIONS, 0)
# tolerance must be correct type
with self.assertRaises(TypeError):
tempo_evaluation(DETECTIONS, ANN_TEMPI, None)
with self.assertRaises(TypeError):
tempo_evaluation(DETECTIONS, ANN_TEMPI, [])
with self.assertRaises(TypeError):
tempo_evaluation(DETECTIONS, ANN_TEMPI, {})
def test_values(self):
# no tempi should return perfect score
scores = tempo_evaluation([], [])
self.assertEqual(scores, (1, True, True))
# no detections should return worst score
scores = tempo_evaluation([], ANNOTATIONS)
self.assertEqual(scores, (0, False, False))
# no annotations should return worst score
scores = tempo_evaluation(DETECTIONS, np.zeros(0))
self.assertEqual(scores, (0, False, False))
# normal calculation
scores = tempo_evaluation(DETECTIONS, ANNOTATIONS)
self.assertEqual(scores, (0.3, True, False))
# uniform strength calculation
scores = tempo_evaluation(DETECTIONS, ANN_TEMPI)
self.assertEqual(scores, (0.5, True, False))
# test evaluation class
class TestTempoEvaluationClass(unittest.TestCase):
def test_types(self):
e = TempoEvaluation(np.zeros(0), np.zeros(0))
self.assertIsInstance(e.pscore, float)
self.assertIsInstance(e.any, bool)
self.assertIsInstance(e.all, bool)
self.assertIsInstance(e.acc1, bool)
self.assertIsInstance(e.acc2, bool)
def test_conversion(self):
# conversion from list should work
e = TempoEvaluation([], [])
self.assertIsInstance(e.pscore, float)
self.assertIsInstance(e.any, bool)
self.assertIsInstance(e.all, bool)
self.assertIsInstance(e.acc1, bool)
self.assertIsInstance(e.acc2, bool)
def test_results_empty(self):
e = TempoEvaluation([], [])
self.assertEqual(e.pscore, 1)
self.assertEqual(e.any, True)
self.assertEqual(e.all, True)
self.assertEqual(e.acc1, True)
self.assertEqual(e.acc2, True)
self.assertEqual(len(e), 1)
def test_results(self):
# two detections / annotations
e = TempoEvaluation([120, 60], [[60, 0.7], [30, 0.3]])
self.assertEqual(e.pscore, 0.7)
self.assertEqual(e.any, True)
self.assertEqual(e.all, False)
# consider only first detection / annotation
e = TempoEvaluation([120, 60], [[60, 0.7], [30, 0.3]], max_len=1)
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
# only det=120 and ann=60 should be evaluated for acc
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, True)
# two detections / annotations
e = TempoEvaluation([120, 60], [[180, 0.7], [60, 0.3]])
self.assertEqual(e.pscore, 0.3)
self.assertEqual(e.any, True)
self.assertEqual(e.all, False)
# only det=120 and ann=180 should be evaluated for acc
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, False)
# consider only first detection / annotation
e = TempoEvaluation([120, 60], [[180, 0.7], [60, 0.3]], max_len=1)
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
# two detections / annotations
e = TempoEvaluation([120, 60], [[180, 0.7], [60, 0.3]])
self.assertEqual(e.pscore, 0.3)
self.assertEqual(e.any, True)
self.assertEqual(e.all, False)
# only det=120 and ann=180 should be evaluated for acc
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, False)
# two detections / annotations
e = TempoEvaluation([120, 60], [[180, 0.3], [60, 0.7]])
self.assertEqual(e.pscore, 0.7)
self.assertEqual(e.any, True)
self.assertEqual(e.all, False)
# only det=120 and ann=60 should be evaluated for acc
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, True)
# consider only strongest detection / annotation (sort them)
e = TempoEvaluation([60, 120], [[180, 0.3], [60, 0.7]], max_len=1)
self.assertEqual(e.pscore, 1)
self.assertEqual(e.any, True)
self.assertEqual(e.all, True)
self.assertEqual(e.acc1, True)
self.assertEqual(e.acc2, True)
# same, but do not sort them
e = TempoEvaluation([60, 120], [[180, 0.3], [60, 0.7]], max_len=1,
sort=False)
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, True)
# only 1 annotations
e = TempoEvaluation([120, 60], [30, 1])
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
# only det=120 and ann=30 should be evaluated for acc
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, False)
# only 1 annotations
e = TempoEvaluation([60, 120], [180, 1])
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
# only det=60 and ann=60 should be evaluated for acc
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, True)
def test_results_no_double(self):
# only 1 annotations
e = TempoEvaluation([60], [30], double=False)
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, False)
# only 1 annotations
e = TempoEvaluation([60], [180], double=False)
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, True)
def test_results_no_triple(self):
# only 1 annotations
e = TempoEvaluation([60], [30], triple=False)
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, True)
# only 1 annotations
e = TempoEvaluation([60], [180], triple=False)
self.assertEqual(e.pscore, 0)
self.assertEqual(e.any, False)
self.assertEqual(e.all, False)
self.assertEqual(e.acc1, False)
self.assertEqual(e.acc2, False)
def test_tostring(self):
print(TempoEvaluation([], []))
class TestMeanTempoEvaluationClass(unittest.TestCase):
def test_types(self):
e = TempoMeanEvaluation([])
self.assertIsInstance(e.pscore, float)
self.assertIsInstance(e.any, float)
self.assertIsInstance(e.all, float)
self.assertIsInstance(e.acc1, float)
self.assertIsInstance(e.acc2, float)
def test_results(self):
# empty mean evaluation
e = TempoMeanEvaluation([])
self.assertTrue(math.isnan(e.pscore))
self.assertTrue(math.isnan(e.any))
self.assertTrue(math.isnan(e.all))
self.assertTrue(math.isnan(e.acc1))
self.assertTrue(math.isnan(e.acc2))
self.assertEqual(len(e), 0)
# mean evaluation with empty evaluation
e1 = TempoEvaluation([], [])
e = TempoMeanEvaluation([e1])
self.assertEqual(e.pscore, 1)
self.assertEqual(e.any, 1)
self.assertEqual(e.all, 1)
self.assertEqual(e.acc1, 1)
self.assertEqual(e.acc2, 1)
self.assertEqual(len(e), 1)
# mean evaluation of empty and real evaluation
e2 = TempoEvaluation([120, 60], [[60, 0.7], [30, 0.3]])
e = TempoMeanEvaluation([e1, e2])
self.assertEqual(e.pscore, (1 + .7) / 2.)
self.assertEqual(e.any, (1 + 1) / 2.)
self.assertEqual(e.all, (1 + 0) / 2.)
self.assertEqual(e.acc1, (1 + 0) / 2.)
self.assertEqual(e.acc2, (1 + 1.) / 2.)
self.assertEqual(len(e), 2)
def test_tostring(self):
print(TempoMeanEvaluation([]))
class TestAddParserFunction(unittest.TestCase):
def setUp(self):
import argparse
self.parser = argparse.ArgumentParser()
sub_parser = self.parser.add_subparsers()
self.sub_parser, self.group = add_parser(sub_parser)
def test_args(self):
args = self.parser.parse_args(['tempo', ANNOTATIONS_PATH,
DETECTIONS_PATH])
self.assertTrue(args.ann_dir is None)
self.assertTrue(args.ann_suffix == '.bpm')
self.assertTrue(args.det_dir is None)
self.assertTrue(args.det_suffix == '.bpm.txt')
self.assertTrue(args.double is True)
self.assertTrue(args.eval == TempoEvaluation)
self.assertTrue(args.files == [ANNOTATIONS_PATH, DETECTIONS_PATH])
self.assertTrue(args.ignore_non_existing is False)
self.assertTrue(args.mean_eval == TempoMeanEvaluation)
# self.assertTrue(args.outfile == StringIO.StringIO)
from madmom.evaluation import tostring
self.assertTrue(args.output_formatter == tostring)
self.assertTrue(args.quiet is False)
self.assertTrue(args.sum_eval is None)
self.assertTrue(args.tolerance == 0.04)
self.assertTrue(args.triple is True)
self.assertTrue(args.verbose == 0)