forked from hiyouga/ChatGLM-Efficient-Tuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi_demo.py
217 lines (162 loc) · 6.78 KB
/
api_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# coding=utf-8
# Implements API for ChatGLM fine-tuned with PEFT in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
# Visit http://localhost:8000/docs for document.
import time
import torch
import uvicorn
from pydantic import BaseModel, Field
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from sse_starlette import EventSourceResponse
from typing import Any, Dict, List, Literal, Optional
from extras.misc import auto_configure_device_map
from pet import get_infer_args, load_model_and_tokenizer
@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ModelCard(BaseModel):
id: str
object: Optional[str] = "model"
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
owned_by: Optional[str] = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = []
class ModelList(BaseModel):
object: Optional[str] = "list"
data: Optional[List[ModelCard]] = []
class ChatMessage(BaseModel):
role: Literal["user", "assistant", "system"]
content: str
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = None
top_p: Optional[float] = None
n: Optional[int] = 1
max_tokens: Optional[int] = None
stream: Optional[bool] = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length"]
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]] = None
class ChatCompletionResponseUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionResponse(BaseModel):
id: Optional[str] = "chatcmpl-default"
object: Literal["chat.completion"]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: ChatCompletionResponseUsage
class ChatCompletionStreamResponse(BaseModel):
id: Optional[str] = "chatcmpl-default"
object: Literal["chat.completion.chunk"]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
@app.get("/v1/models", response_model=ModelList)
async def list_models():
global model_args
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer, generating_args
if request.messages[-1].role != "user":
raise HTTPException(status_code=400, detail="Invalid request")
query = request.messages[-1].content
prev_messages = request.messages[:-1]
if len(prev_messages) > 0 and prev_messages[0].role == "system":
query = prev_messages.pop(0).content + query
history = []
if len(prev_messages) % 2 == 0:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
history.append([prev_messages[i].content, prev_messages[i+1].content])
gen_kwargs = generating_args.to_dict()
gen_kwargs.update({
"temperature": request.temperature if request.temperature else gen_kwargs["temperature"],
"top_p": request.top_p if request.top_p else gen_kwargs["top_p"]
})
if request.max_tokens:
gen_kwargs.pop("max_length", None)
gen_kwargs["max_new_tokens"] = request.max_tokens
if request.stream:
generate = predict(query, history, gen_kwargs, request.model)
return EventSourceResponse(generate, media_type="text/event-stream")
response, _ = model.chat(tokenizer, query, history=history, **gen_kwargs)
usage = ChatCompletionResponseUsage( # too complex to compute
prompt_tokens=1,
completion_tokens=1,
total_tokens=2
)
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=response),
finish_reason="stop"
)
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage, object="chat.completion")
async def predict(query: str, history: List[List[str]], gen_kwargs: Dict[str, Any], model_id: str):
global model, tokenizer
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield chunk.json(exclude_unset=True, ensure_ascii=False)
current_length = 0
for new_response, _ in model.stream_chat(tokenizer, query, history, **gen_kwargs):
if len(new_response) == current_length:
continue
new_text = new_response[current_length:]
current_length = len(new_response)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=new_text),
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield chunk.json(exclude_unset=True, ensure_ascii=False)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
yield chunk.json(exclude_unset=True, ensure_ascii=False)
yield "[DONE]"
if __name__ == "__main__":
model_args, finetuning_args, generating_args = get_infer_args()
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
if torch.cuda.device_count() > 1:
from accelerate import dispatch_model
device_map = auto_configure_device_map(torch.cuda.device_count(), use_v2=model_args.use_v2)
model = dispatch_model(model, device_map)
else:
model = model.cuda()
model.eval()
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)