-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy patharchr_helpers.R
351 lines (290 loc) · 13.7 KB
/
archr_helpers.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# Helper functions for ArchR
suppressPackageStartupMessages({
library(ArchR)
library(magrittr)
})
getMatrixValuesFromProj <- function(proj, matrixName="GeneScoreMatrix", names=NULL, imputeMatrix=FALSE){
# Return the imputed matrix from an ArchR project
# Must have already added imputedWeights, etc.
# Names is a vector of feature names to return. If not provided, will use all available features
# Warning though: imputing the matrix for all features may take a very long time
# Returns a summarized experiment:
se <- getMatrixFromProject(proj, useMatrix = matrixName, binarize = FALSE)
# Get mat with cell names and row names
mat <- assays(se)[[matrixName]]
colnames(mat) <- rownames(colData(se))
rownames(mat) <- rowData(se)$name # All matrix rowData has a name field
# Subset by provided names
if(!is.null(names)){
# Check if any names are invalid
validNames <- names[names %in% rownames(mat)]
if(any(!names %in% validNames)){
invalidNames <- names[!names %in% validNames]
message(sprintf("Warning! name(s) %s are not present in matrix!", paste(invalidNames, collapse=',')))
}
mat <- mat[validNames,]
}
# Impute matrix values
if(imputeMatrix){
message("Imputing matrix...")
imputeWeights <- getImputeWeights(proj)
mat <- ArchR::imputeMatrix(mat = as.matrix(mat), imputeWeights = imputeWeights)
}
mat
}
getClusterPeaks <- function(proj, clusterNames, peakGR=NULL, replicateScoreQuantileCutoff=0, originalScore=FALSE){
# This function will return the subset of peaks from the full ArchR project that were
# initially called on the clusters provided in clusterNames.
######################################################################################
# proj = ArchR project
# clusterNames = name or names of clusters to pull peaks from. These cluster names must
# match the cluster names originally used to call peaks
# peakGR = the ArchR peak genomic range obtained using 'getPeakSet'. Will return a subset of
# these peaks that overlap the peaks originally called using the provided clusters
# replicateScoreQuantileCutoff = A numeric quantile cutoff for selecting peaks.
if(is.null(peakGR)){
peakGR <- getPeakSet(proj)
}
peakDir <- paste0(proj@projectMetadata$outputDirectory, "/PeakCalls")
calledPeaks <- lapply(clusterNames, function(x){
readRDS(paste0(peakDir, sprintf("/%s-reproduciblePeaks.gr.rds", x)))
}) %>% as(., "GRangesList") %>% unlist()
calledPeaks <- calledPeaks[calledPeaks$replicateScoreQuantile >= replicateScoreQuantileCutoff]
peakGR <- peakGR[overlapsAny(peakGR, calledPeaks)]
if(originalScore){
message(sprintf("Getting original scores from clusters..."))
# Replace 'score' column with the score of the original peak call in this cluster
# (if multiple clusters, replaces with the maximum score)
ol <- findOverlaps(peakGR, calledPeaks, type="any", maxgap=0, ignore.strand=TRUE)
odf <- as.data.frame(ol)
odf$og_score <- calledPeaks$score[odf$subjectHits]
score_df <- odf %>% group_by(queryHits) %>% summarize(max_score=max(og_score)) %>% as.data.frame()
peakGR$score[score_df$queryHits] <- score_df$max_score
}
peakGR
}
buildUMAPdfFromArchR <- function(proj, cellColData=NULL, embeddingName="UMAP",
useCells=NULL, dataMat=NULL, featureName=NULL, shuffle=TRUE,
lowerPctLim=NULL, upperPctLim=NULL){
# Return a three column UMAP df from an ArchR project
# If cellColData is not null, return the indicated column
# dataMat is a pre-populated cell x feature matrix of values to plot.
# The featureName indicates which one
# Get UMAP coordinates first:
df <- proj@embeddings[[embeddingName]]$df
if(is.null(useCells)){
useCells <- rownames(df)
}
colnames(df) <- c("UMAP1", "UMAP2")
df <- df[useCells,] %>% as.data.frame()
if(!is.null(cellColData)){
df[,3] <- proj@cellColData[useCells,cellColData] %>% as.vector()
colnames(df) <- c("UMAP1", "UMAP2", cellColData)
}
if(!is.null(dataMat) & !is.null(featureName)){
df <- merge(df, dataMat, by=0, all=TRUE)
df <- df[,c("UMAP1", "UMAP2", featureName)]
}
if(shuffle){
df <- df[sample(nrow(df), replace=FALSE),]
}
# Force limits if indicated
if(!is.null(lowerPctLim)){
lowerLim <- quantile(df[,3], probs=c(lowerPctLim))
df[,3][df[,3] <= lowerLim] <- lowerLim
}
if(!is.null(upperPctLim)){
upperLim <- quantile(df[,3], probs=c(upperPctLim))
df[,3][df[,3] >= upperLim] <- upperLim
}
df
}
scoreGeneSet <- function(expr, geneSet){
# Generate scores for each cell in expr matrix (log2TP10K, genes x cells)
# See: Smillie et al. Cell 2019
# Subset expr matrix by genes in geneSet:
validGenes <- geneSet[geneSet %in% rownames(expr)]
subExpr <- expr[validGenes,]
# Remove any genes that have no expression in any cells
subExpr <- subExpr[rowSums(subExpr) > 0,]
# Prevent highly expressed genes from dominating gene score signature by
# scaling each gene by its root mean squared expression
scaledSubExpr <- subExpr %>% t() %>% scale(., center=FALSE) %>% t()
# Signature score is the mean scaled expression across all genes in signature
scores <- colMeans(scaledSubExpr)
return(scores)
}
# Functions for creating 'low-overlapping aggregates' of cells
computeKNN <- function(data=NULL, query=NULL, k=50, includeSelf=FALSE, ...){
# Compute KNN for query points (usually a reduced dims matrix)
# This returns a matrix of indices mapping query to neighbors in data
# If query has n cells (rows) and k = 50, will be a n x 50 matrix
if(is.null(query)){
query <- data
searchSelf <- TRUE
}else{
searchSelf <- FALSE
}
if(searchSelf & !includeSelf){
knnIdx <- nabor::knn(data = data, query = query, k = k + 1, ...)$nn.idx
knnIdx <- knnIdx[,-1,drop=FALSE]
}else{
knnIdx <- nabor::knn(data = data, query = query, k = k, ...)$nn.idx
}
knnIdx
}
getLowOverlapAggregates <- function(proj, target.agg=500, k=100, overlapCutoff=0.8, dimReduc="IterativeLSI", seed=1){
# Generate low-overlapping aggregates of cells
##############################################
# proj = ArchR project
# target.agg = number of target aggregates (before filtering)
# k = number of cells per aggreagate
# overlapCutoff = Maximum allowable overlap between aggregates
set.seed(seed)
# Get reduced dims:
rD <- getReducedDims(proj, reducedDims=dimReduc)
# Subsample
idx <- sample(seq_len(nrow(rD)), target.agg, replace = !nrow(rD) >= target.agg)
# Get KNN Matrix:
knnObj <- computeKNN(data=rD, query=rD[idx,], k=k)
# Check whether aggregates pass overlap cutoff
keepKnn <- ArchR:::determineOverlapCpp(knnObj, floor(overlapCutoff * k))
#Keep Above Cutoff
knnObj <- knnObj[keepKnn==0,]
# Convert To Names List
knnObj <- lapply(seq_len(nrow(knnObj)), function(x){
rownames(rD)[knnObj[x, ]]
}) %>% SimpleList
# Name aggregates and return as a df of cell ids x aggs
names(knnObj) <- paste0("agg", seq_len(length(knnObj)))
knnDF <- data.frame(knnObj)[,c(3,2)]
colnames(knnDF) <- c("cell_name", "group")
knnDF$cell_name <- as.character(knnDF$cell_name)
knnDF
}
# Cluster visualization helpers
relabelClusters <- function(proj, clusterName="Clusters"){
# Relabel clusters to be ordered by cluster size
ogClusters <- getCellColData(proj)[[clusterName]]
tabDF <- base::table(ogClusters) %>% as.data.frame
colnames(tabDF) <- c("Clusters", "count")
tabDF["NewClusters"] <- rank(-tabDF$count)
swapVec <- paste0("C", tabDF$NewClusters)
names(swapVec) <- tabDF$Clusters
# Now replace cluster names
newClust <- sapply(ogClusters, function(x) swapVec[x]) %>% unname()
proj <- addCellColData(proj, data=newClust, name=clusterName, cells=getCellNames(proj), force=TRUE)
return(proj)
}
visualizeClustering <- function(proj, pointSize=0.75, prefix="", clusterName="Clusters", sampleName="Sample2", embedding="UMAP",
sampleCmap=NULL, diseaseCmap=NULL, barwidth=0.9){
# Plot various clustering results
# Set colormap
qualcmap <- cmaps_BOR$stallion
quantcmap <- cmaps_BOR$solarExtra
namedSampCmap <- TRUE
namedDiseaseCmap <- TRUE
if(is.null(sampleCmap)){
sampleCmap <- qualcmap
namedSampCmap <- FALSE
}
if(is.null(diseaseCmap)){
diseaseCmap <- qualcmap
namedDiseaseCmap <- FALSE
}
# Plot the UMAPs by Sample and Cluster:
p1 <- plotEmbedding(proj, colorBy="cellColData", name=sampleName, embedding=embedding, plotAs="points", size=pointSize, pal=sampleCmap, labelMeans=FALSE)
p2 <- plotEmbedding(proj, colorBy="cellColData", name=clusterName, embedding= embedding, plotAs="points", size=pointSize, labelMeans=FALSE)
p3 <- plotEmbedding(proj, colorBy="cellColData", name="diseaseStatus", embedding=embedding, plotAs="points", size=pointSize, pal=diseaseCmap, labelMeans=FALSE)
proj@cellColData$log10nFrags <- log10(proj@cellColData$nFrags)
p4 <- plotEmbedding(proj, colorBy="cellColData", name="log10nFrags", embedding=embedding, plotAs="points", size=pointSize, labelMeans=FALSE)
p5 <- plotEmbedding(proj, colorBy="cellColData", name="TSSEnrichment", embedding=embedding, plotAs="points", size=pointSize, labelMeans=FALSE)
p6 <- plotEmbedding(proj, colorBy="cellColData", name="DoubletScore",
embedding = embedding, plotAs="points", size=pointSize, labelMeans=FALSE, imputeWeights=getImputeWeights(proj))
p7 <- plotEmbedding(proj, colorBy = "cellColData", name="cellCallUncertainty",
embedding = embedding, plotAs="points", size=pointSize, labelMeans=FALSE, imputeWeights=getImputeWeights(proj))
ggAlignPlots(p1,p2,p3,p4,p5,p6,p7, type="h")
plotPDF(p1,p2,p3,p4,p5,p6,p7, name = paste0(prefix,"Plot-UMAP-Sample-Clusters.pdf"), ArchRProj=proj, addDOC=FALSE, width=5, height=5)
# Non-ArchR plots:
plotDir <- paste0(proj@projectMetadata$outputDirectory, "/Plots")
# Bar plot cluster counts
clustVec <- getCellColData(proj)[[clusterName]] %>% gsub("[^[:digit:].]", "", .) %>% as.numeric()
tabDF <- base::table(clustVec) %>% as.data.frame
colnames(tabDF) <- c("Clusters", "count")
pdf(paste0(plotDir,sprintf("/%sclusterBarPlot.pdf", prefix)))
print(qcBarPlot(tabDF, cmap=qualcmap, barwidth=barwidth))
dev.off()
# Stacked bar plot fraction samples in clusters
clustBySamp <- fractionXbyY(clustVec, proj$Sample2, add_total=TRUE, xname="Cluster", yname="Sample")
pdf(paste0(plotDir, sprintf("/%sclustBySampleBarPlot.pdf", prefix)))
print(stackedBarPlot(clustBySamp, cmap=sampleCmap, namedColors=namedSampCmap, barwidth=barwidth))
dev.off()
# Stacked bar plot fraction disease in clusters
diseaseBySamp <- fractionXbyY(clustVec, proj$diseaseStatus, add_total=TRUE, xname="Cluster", yname="diseaseStatus")
pdf(paste0(plotDir, sprintf("/%sclustByDiseaseBarPlot.pdf", prefix)))
print(stackedBarPlot(diseaseBySamp, cmap=diseaseCmap, namedColors=namedDiseaseCmap, barwidth=barwidth))
dev.off()
return(proj)
}
# Functions for working with peak to gene linkages
getP2G_GR <- function(proj, corrCutoff=NULL, varCutoffATAC=0.25, varCutoffRNA=0.25, filtNA=TRUE){
# Function to get peaks and genes involved in peak to gene links
# (See: https://github.com/GreenleafLab/ArchR/issues/368)
############################################################
# proj: ArchR project that alreayd has Peak2GeneLinks
# corrCutoff: minimum numeric peak-to-gene correlation to return
# varCutoffATAC: minimum variance quantile of the ATAC peak accessibility when selecting links
# varCutoffRNA: minimum variance quantile of the RNA gene expression when selecting links
p2gDF <- metadata(proj@peakSet)$Peak2GeneLinks
p2gDF$symbol <- mcols(metadata(p2gDF)$geneSet)$name[p2gDF$idxRNA] %>% as.character()
p2gDF$peakName <- (metadata(p2gDF)$peakSet %>% {paste0(seqnames(.), "_", start(.), "_", end(.))})[p2gDF$idxATAC]
# Remove peaks with 'NA' correlation values
if(filtNA){
p2gDF <- p2gDF[!is.na(p2gDF$Correlation),]
}
if(!is.null(corrCutoff)){
p2gDF <- p2gDF[(p2gDF$Correlation > corrCutoff),]
}
# Filter by variance quantile
p2gDF <- p2gDF[which(p2gDF$VarQATAC > varCutoffATAC & p2gDF$VarQRNA > varCutoffRNA),]
# The genomic range contains just the peak ranges:
p2gGR <- metadata(p2gDF)$peakSet[p2gDF$idxATAC]
mcols(p2gGR) <- p2gDF
p2gGR
}
grLims <- function(gr){
# Get the minimum and maximum range from a GR
if(length(gr) == 0){
return(NA)
}
starts <- start(gr)
ends <- end(gr)
c(min(starts, ends), max(starts, ends))
}
getP2Gregions <- function(proj, genes, p2gGR=NULL, corrCutoff=0.4, buffer_space=0.05, min_width=25000, ...) {
# Function to get regions containing entire peak to gene region,
# i.e. a GR that contains all peak to gene links
###############################################################
# p2gGR: genomic range containing all peak to gene links
# genes: vector of genes to look up
# buffer_space: fraction of total length to expand on each side of region
# Get gene GR from ArchR project
geneGR <- promoters(getGenes(proj)) # Promoters gets 2kb upstream and 200bp downstream
geneGR <- geneGR[!is.na(geneGR$symbol)]
# if p2gGR not provided, pull it from ArchR project
if(is.null(p2gGR)){
p2gGR <- getP2G_GR(proj, corrCutoff=corrCutoff, ...)
}
# Now for each gene, construct GR of all loops and gene TSS
resultGR <- geneGR[match(genes, geneGR$symbol)]
start(resultGR) <- sapply(resultGR$symbol, function(x){
min(grLims(resultGR[resultGR$symbol == x]), grLims(p2gGR[p2gGR$symbol == x]), na.rm=TRUE)
})
end(resultGR) <- sapply(resultGR$symbol, function(x){
max(grLims(resultGR[resultGR$symbol == x]), grLims(p2gGR[p2gGR$symbol == x]), na.rm=TRUE)
})
# Finally, resize by buffer space
resultGR <- resize(resultGR, width=width(resultGR) + buffer_space*width(resultGR), fix="center")
resultGR <- resize(resultGR, width=ifelse(width(resultGR) > min_width, width(resultGR), min_width), fix="center")
resultGR
}