-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
59 lines (56 loc) · 2.67 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python3
##########################################################################################
# Author: Tung Kieu
# Date Started: 2018-04-07
# Purpose: Train recurrent neural network to classify Time Series.
##########################################################################################
##########################################################################################
# Libraries
##########################################################################################
import numpy as np
##########################################################################################
# Write log
##########################################################################################
def WriteFile(_file_name, _mode, _content):
file = open(_file_name, _mode)
file.writelines(_content + '\n')
file.close()
##########################################################################################
# Load data
##########################################################################################
def LoadDataWithoutRatio(_direc, _dataset):
'''
Load dataset from UCR
param _direc: name of entire folder (UCR)
:param _dataset: name of dataset (e.g., Adiac)
:return: x_train, x_test, yTrain_enc, yTest_enc, max_sequence_length, number_of_class
'''
data_dir = _direc + '/' + _dataset + '/' + _dataset
data_train = np.loadtxt(data_dir + '_TRAIN', delimiter=',')
data_test = np.loadtxt(data_dir + '_TEST', delimiter=',')
# Extract x_train and x_test
x_train = data_train[:, 1:]
x_test = data_test[:, 1:]
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1)
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], 1)
# Calculate max sequence length
length_x_train = x_train.shape[1]
length_x_test = x_test.shape[1]
max_sequence_length = max(length_x_train, length_x_test)
# Extract y_train and y_test
y_train = data_train[:, 0].astype(int)
y_test = data_test[:, 0].astype(int)
# Move y from [1:n] -> [0:n-1]
y_train = y_train - 1
y_test = y_test - 1
# Calculate number of class
number_of_class_train = np.unique(y_train).shape[0]
number_of_class_test = np.unique(y_test).shape[0]
number_of_class = max(number_of_class_train, number_of_class_test)
yTrain_enc = np.zeros((y_train.shape[0], number_of_class), dtype='int32')
# empty one-hot matrix
yTrain_enc[np.arange(y_train.shape[0]), y_train] = 1
yTest_enc = np.zeros((y_test.shape[0], number_of_class), dtype='int32')
# empty one-hot matrix
yTest_enc[np.arange(y_test.shape[0]), y_test] = 1
return x_train, x_test, yTrain_enc, yTest_enc, max_sequence_length, number_of_class