-
Notifications
You must be signed in to change notification settings - Fork 1
/
BigStepPreservation.agda
173 lines (168 loc) · 12.4 KB
/
BigStepPreservation.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
module CC.BigStepPreservation where
open import Data.Nat
open import Data.Unit using (⊤; tt)
open import Data.Bool using (true; false) renaming (Bool to 𝔹)
open import Data.List
open import Data.Product using (_×_; ∃-syntax; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Maybe
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; subst; subst₂; trans)
open import Function using (case_of_)
open import Common.Utils
open import Common.Types
open import CC.CCStatics
open import CC.HeapTyping
open import CC.BigStep
open import CC.WellTyped public
open import CC.SubstPreserve public
⇓-preserve : ∀ {Σ gc pc M V A μ μ′}
→ [] ; Σ ; gc ; pc ⊢ M ⦂ A
→ Σ ⊢ μ
→ l pc ≾ gc
→ μ ∣ pc ⊢ M ⇓ V ∣ μ′
---------------------------------------------------------------
→ ∃[ Σ′ ] (Σ′ ⊇ Σ) × ([] ; Σ′ ; gc ; pc ⊢ V ⦂ A) × (Σ′ ⊢ μ′)
⇓-preserve {Σ} {μ = μ} ⊢V ⊢μ pc≾gc (⇓-val v) = ⟨ Σ , ⊇-refl Σ , ⊢V , ⊢μ ⟩
⇓-preserve (⊢app ⊢L ⊢M) ⊢μ pc≾gc (⇓-app L⇓ƛN M⇓V N[V]⇓W) =
let v = ⇓-value M⇓V
w = ⇓-value N[V]⇓W in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢ƛN , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓ƛN in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢V , ⊢μ₂ ⟩ = ⇓-preserve (relax-Σ ⊢M Σ₁⊇Σ) ⊢μ₁ pc≾gc M⇓V in
case canonical-fun ⊢ƛN V-ƛ of λ where
(Fun-ƛ ⊢N (<:-ty ℓ<:g (<:-fun gc⋎g<:gc′ A<:A′ B′<:B))) →
let gc⋎ℓ<:gc⋎g = consis-join-<:ₗ <:ₗ-refl ℓ<:g
gc⋎ℓ<:gc′ = <:ₗ-trans gc⋎ℓ<:gc⋎g gc⋎g<:gc′
pc⋎ℓ≾gc′ = ≾-<: (consis-join-≾ pc≾gc ≾-refl) gc⋎ℓ<:gc′ in
let ⊢N[V] = substitution-pres (relax-Σ ⊢N Σ₂⊇Σ₁) (⊢value-pc (⊢sub ⊢V A<:A′) v) in
let ⟨ Σ₃ , Σ₃⊇Σ₂ , ⊢W , ⊢μ₃ ⟩ = ⇓-preserve ⊢N[V] ⊢μ₂ pc⋎ℓ≾gc′ N[V]⇓W in
⟨ Σ₃ , ⊇-trans Σ₃⊇Σ₂ (⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ) ,
(⊢sub (stamp-val-wt (⊢value-pc ⊢W w) w) (stamp-<: B′<:B ℓ<:g)) , ⊢μ₃ ⟩
⇓-preserve (⊢if ⊢L ⊢M ⊢N) ⊢μ pc≾gc (⇓-if-true L⇓true M⇓V) =
let v = ⇓-value M⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢true , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓true in
case const-label-≼ ⊢true of λ where
⟨ ℓ′ , refl , ℓ≼ℓ′ ⟩ →
let pc⋎ℓ≾gc⋎ℓ′ = consis-join-≾ pc≾gc (≾-l ℓ≼ℓ′) in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢V , ⊢μ₂ ⟩ = ⇓-preserve (relax-Σ ⊢M Σ₁⊇Σ) ⊢μ₁ pc⋎ℓ≾gc⋎ℓ′ M⇓V in
let A⋎ℓ<:A⋎ℓ′ = stamp-<: <:-refl (<:-l ℓ≼ℓ′) in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ ,
⊢sub (stamp-val-wt (⊢value-pc ⊢V v) v) A⋎ℓ<:A⋎ℓ′ , ⊢μ₂ ⟩
⇓-preserve (⊢if ⊢L ⊢M ⊢N) ⊢μ pc≾gc (⇓-if-false L⇓false N⇓V) =
let v = ⇓-value N⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢false , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓false in
case const-label-≼ ⊢false of λ where
⟨ ℓ′ , refl , ℓ≼ℓ′ ⟩ →
let pc⋎ℓ≾gc⋎ℓ′ = consis-join-≾ pc≾gc (≾-l ℓ≼ℓ′) in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢V , ⊢μ₂ ⟩ = ⇓-preserve (relax-Σ ⊢N Σ₁⊇Σ) ⊢μ₁ pc⋎ℓ≾gc⋎ℓ′ N⇓V in
let A⋎ℓ<:A⋎ℓ′ = stamp-<: <:-refl (<:-l ℓ≼ℓ′) in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ ,
⊢sub (stamp-val-wt (⊢value-pc ⊢V v) v) A⋎ℓ<:A⋎ℓ′ , ⊢μ₂ ⟩
⇓-preserve (⊢let ⊢M ⊢N) ⊢μ pc≾gc (⇓-let M⇓V N[V]⇓W) =
let v = ⇓-value M⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢V , ⊢μ₁ ⟩ = ⇓-preserve ⊢M ⊢μ pc≾gc M⇓V in
let ⊢N[V] = substitution-pres (relax-Σ ⊢N Σ₁⊇Σ) (⊢value-pc ⊢V v) in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢W , ⊢μ₂ ⟩ = ⇓-preserve ⊢N[V] ⊢μ₁ pc≾gc N[V]⇓W in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ , ⊢W , ⊢μ₂ ⟩
⇓-preserve (⊢ref? {T = T} ⊢M) ⊢μ pc≾gc (⇓-ref? {n = n} {ℓ} M⇓V fresh pc≼ℓ) =
let v = ⇓-value M⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢V , ⊢μ₁ ⟩ = ⇓-preserve ⊢M ⊢μ pc≾gc M⇓V in
⟨ cons-Σ (a⟦ ℓ ⟧ n) T Σ₁ , ⊇-trans (⊇-fresh (a⟦ ℓ ⟧ n) T ⊢μ₁ fresh) Σ₁⊇Σ ,
⊢addr (lookup-Σ-cons (a⟦ ℓ ⟧ n) Σ₁) , ⊢μ-new (⊢value-pc ⊢V v) v ⊢μ₁ fresh ⟩
⇓-preserve (⊢ref {T = T} ⊢M pc′≼ℓ) ⊢μ pc≾gc (⇓-ref {n = n} {ℓ} M⇓V fresh) =
let v = ⇓-value M⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢V , ⊢μ₁ ⟩ = ⇓-preserve ⊢M ⊢μ pc≾gc M⇓V in
⟨ cons-Σ (a⟦ ℓ ⟧ n) T Σ₁ , ⊇-trans (⊇-fresh (a⟦ ℓ ⟧ n) T ⊢μ₁ fresh) Σ₁⊇Σ ,
⊢addr (lookup-Σ-cons (a⟦ ℓ ⟧ n) Σ₁) , ⊢μ-new (⊢value-pc ⊢V v) v ⊢μ₁ fresh ⟩
⇓-preserve (⊢deref ⊢M) ⊢μ pc≾gc (⇓-deref {v = v†} {ℓ = ℓ} {ℓ₁} M⇓a eq) =
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢a , ⊢μ₁ ⟩ = ⇓-preserve ⊢M ⊢μ pc≾gc M⇓a in
case canonical-ref ⊢a V-addr of λ where
(Ref-addr {n = n} {g = l ℓ′} eq₁ (<:-ty (<:-l ℓ≼ℓ′) (<:-ref A′<:A A<:A′))) →
case <:-antisym A′<:A A<:A′ of λ where
refl →
let ⟨ wf , V , v , eq′ , ⊢V ⟩ = ⊢μ₁ n ℓ₁ eq₁ in
case trans (sym eq) eq′ of λ where
refl →
let leq : ℓ₁ ⋎ (ℓ₁ ⋎ ℓ) ≼ ℓ₁ ⋎ ℓ′
leq = subst (λ □ → □ ≼ _) (sym ℓ₁⋎[ℓ₁⋎ℓ]≡ℓ₁⋎ℓ) (join-≼′ ≼-refl ℓ≼ℓ′) in
⟨ Σ₁ , Σ₁⊇Σ , ⊢sub (stamp-val-wt (⊢value-pc ⊢V v) v†) (<:-ty (<:-l leq) <:ᵣ-refl) , ⊢μ₁ ⟩
⇓-preserve (⊢assign? ⊢L ⊢M) ⊢μ pc≾gc (⇓-assign? {n = n} {ℓ} {ℓ₁} L⇓a M⇓V pc≼ℓ₁) =
let v = ⇓-value M⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢a , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓a in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢V , ⊢μ₂ ⟩ = ⇓-preserve (relax-Σ ⊢M Σ₁⊇Σ) ⊢μ₁ pc≾gc M⇓V in
case canonical-ref ⊢a V-addr of λ where
(Ref-addr eq (<:-ty (<:-l ℓ≼ℓ′) (<:-ref A′<:A A<:A′))) →
case <:-antisym A′<:A A<:A′ of λ where
refl →
let eq′ = Σ₂⊇Σ₁ (a⟦ ℓ₁ ⟧ n) eq in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ , ⊢const , ⊢μ-update (⊢value-pc ⊢V v) v ⊢μ₂ eq′ ⟩
⇓-preserve (⊢assign ⊢L ⊢M pc′≼ℓ) ⊢μ pc≾gc (⇓-assign {n = n} {ℓ} {ℓ₁} L⇓a M⇓V) =
let v = ⇓-value M⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢a , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓a in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢V , ⊢μ₂ ⟩ = ⇓-preserve (relax-Σ ⊢M Σ₁⊇Σ) ⊢μ₁ pc≾gc M⇓V in
case canonical-ref ⊢a V-addr of λ where
(Ref-addr eq (<:-ty (<:-l ℓ≼ℓ′) (<:-ref A′<:A A<:A′))) →
case <:-antisym A′<:A A<:A′ of λ where
refl →
let eq′ = Σ₂⊇Σ₁ (a⟦ ℓ₁ ⟧ n) eq in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ , ⊢const , ⊢μ-update (⊢value-pc ⊢V v) v ⊢μ₂ eq′ ⟩
⇓-preserve (⊢cast ⊢M) ⊢μ pc≾gc (⇓-cast a M⇓V V⟨c⟩↝N N⇓W) =
let v = ⇓-value M⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢V , ⊢μ₁ ⟩ = ⇓-preserve ⊢M ⊢μ pc≾gc M⇓V in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢W , ⊢μ₂ ⟩ = ⇓-preserve (applycast-pres (⊢value-pc ⊢V v) v a V⟨c⟩↝N) ⊢μ₁ pc≾gc N⇓W in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ , ⊢W , ⊢μ₂ ⟩
⇓-preserve {gc = gc} {pc} (⊢if ⊢L ⊢M ⊢N) ⊢μ pc≾gc (⇓-if-cast-true {ℓ = ℓ} i L⇓true⟨c⟩ M⇓V V⋎ℓ⟨bc⟩⇓W) =
let v = ⇓-value M⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢true⟨c⟩ , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓true⟨c⟩ in
case canonical-const ⊢true⟨c⟩ (⇓-value L⇓true⟨c⟩) of λ where
(Const-inj ℓ≼ℓ′) → {- g = ⋆ -}
let pc⋎ℓ≾gc⋎g : l (pc ⋎ ℓ) ≾ (gc ⋎̃ ⋆)
pc⋎ℓ≾gc⋎g = subst (λ □ → _ ≾ □) (sym (g⋎̃⋆≡⋆ {gc})) ≾-⋆r in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢V , ⊢μ₂ ⟩ = ⇓-preserve (relax-Σ ⊢M Σ₁⊇Σ) ⊢μ₁ pc⋎ℓ≾gc⋎g M⇓V in
let A⋎ℓ<:A⋎ℓ′ = stamp-<: <:-refl (<:-l ℓ≼ℓ′) in
let ⊢V⋎ℓ⟨bc⟩ = ⊢cast (⊢sub (stamp-val-wt (⊢value-pc ⊢V v) v) A⋎ℓ<:A⋎ℓ′) in
let ⟨ Σ₃ , Σ₃⊇Σ₂ , ⊢W , ⊢μ₃ ⟩ = ⇓-preserve ⊢V⋎ℓ⟨bc⟩ ⊢μ₂ pc≾gc V⋎ℓ⟨bc⟩⇓W in
⟨ Σ₃ , ⊇-trans Σ₃⊇Σ₂ (⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ) , ⊢W , ⊢μ₃ ⟩
⇓-preserve {gc = gc} {pc} (⊢if ⊢L ⊢M ⊢N) ⊢μ pc≾gc (⇓-if-cast-false {ℓ = ℓ} i L⇓false⟨c⟩ N⇓V V⋎ℓ⟨bc⟩⇓W) =
let v = ⇓-value N⇓V in
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢false⟨c⟩ , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓false⟨c⟩ in
case canonical-const ⊢false⟨c⟩ (⇓-value L⇓false⟨c⟩) of λ where
(Const-inj ℓ≼ℓ′) → {- g = ⋆ -}
let pc⋎ℓ≾gc⋎g : l (pc ⋎ ℓ) ≾ (gc ⋎̃ ⋆)
pc⋎ℓ≾gc⋎g = subst (λ □ → _ ≾ □) (sym (g⋎̃⋆≡⋆ {gc})) ≾-⋆r in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢V , ⊢μ₂ ⟩ = ⇓-preserve (relax-Σ ⊢N Σ₁⊇Σ) ⊢μ₁ pc⋎ℓ≾gc⋎g N⇓V in
let A⋎ℓ<:A⋎ℓ′ = stamp-<: <:-refl (<:-l ℓ≼ℓ′) in
let ⊢V⋎ℓ⟨bc⟩ = ⊢cast (⊢sub (stamp-val-wt (⊢value-pc ⊢V v) v) A⋎ℓ<:A⋎ℓ′) in
let ⟨ Σ₃ , Σ₃⊇Σ₂ , ⊢W , ⊢μ₃ ⟩ = ⇓-preserve ⊢V⋎ℓ⟨bc⟩ ⊢μ₂ pc≾gc V⋎ℓ⟨bc⟩⇓W in
⟨ Σ₃ , ⊇-trans Σ₃⊇Σ₂ (⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ) , ⊢W , ⊢μ₃ ⟩
⇓-preserve (⊢app ⊢L ⊢M) ⊢μ pc≾gc (⇓-fun-cast i L⇓V⟨c⟩ M⇓W elim⇓V′) =
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢V⟨c⟩ , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓V⟨c⟩ in
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢W , ⊢μ₂ ⟩ = ⇓-preserve (relax-Σ ⊢M Σ₁⊇Σ) ⊢μ₁ pc≾gc M⇓W in
let w = ⇓-value M⇓W in
case ⇓-value L⇓V⟨c⟩ of λ where
(V-cast v _) →
let ⟨ Σ₃ , Σ₃⊇Σ₂ , ⊢V′ , ⊢μ₃ ⟩ = ⇓-preserve (elim-fun-proxy-wt (⊢app (relax-Σ ⊢V⟨c⟩ Σ₂⊇Σ₁) ⊢W) v w i) ⊢μ₂ pc≾gc elim⇓V′ in
⟨ Σ₃ , ⊇-trans Σ₃⊇Σ₂ (⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ) , ⊢V′ , ⊢μ₃ ⟩
⇓-preserve (⊢deref ⊢M) ⊢μ pc≾gc (⇓-deref-cast i M⇓V⟨c⟩ !V⟨oc⟩⇓W) =
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢V⟨c⟩ , ⊢μ₁ ⟩ = ⇓-preserve ⊢M ⊢μ pc≾gc M⇓V⟨c⟩ in
case canonical-ref ⊢V⟨c⟩ (⇓-value M⇓V⟨c⟩) of λ where
(Ref-proxy ref i (<:-ty g₂<:g (<:-ref B<:A A<:B))) →
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢W , ⊢μ₂ ⟩ = ⇓-preserve (⊢cast (⊢deref (ref-wt ref))) ⊢μ₁ pc≾gc !V⟨oc⟩⇓W in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ , ⊢sub ⊢W (stamp-<: B<:A g₂<:g) , ⊢μ₂ ⟩
⇓-preserve (⊢assign? ⊢L ⊢M) ⊢μ pc≾gc (⇓-assign?-cast i L⇓V⟨c⟩ elim⇓W) =
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢V⟨c⟩ , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓V⟨c⟩ in
case ⇓-value L⇓V⟨c⟩ of λ where
(V-cast v _) →
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢W , ⊢μ₂ ⟩ = ⇓-preserve (elim-ref-proxy-wt (⊢assign? ⊢V⟨c⟩ (relax-Σ ⊢M Σ₁⊇Σ)) v i unchecked) ⊢μ₁ pc≾gc elim⇓W in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ , ⊢W , ⊢μ₂ ⟩
⇓-preserve (⊢assign ⊢L ⊢M pc′≼ℓ) ⊢μ pc≾gc (⇓-assign-cast i L⇓V⟨c⟩ elim⇓W) =
let ⟨ Σ₁ , Σ₁⊇Σ , ⊢V⟨c⟩ , ⊢μ₁ ⟩ = ⇓-preserve ⊢L ⊢μ pc≾gc L⇓V⟨c⟩ in
case ⇓-value L⇓V⟨c⟩ of λ where
(V-cast v _) →
let ⟨ Σ₂ , Σ₂⊇Σ₁ , ⊢W , ⊢μ₂ ⟩ = ⇓-preserve (elim-ref-proxy-wt (⊢assign ⊢V⟨c⟩ (relax-Σ ⊢M Σ₁⊇Σ) pc′≼ℓ) v i static) ⊢μ₁ pc≾gc elim⇓W in
⟨ Σ₂ , ⊇-trans Σ₂⊇Σ₁ Σ₁⊇Σ , ⊢W , ⊢μ₂ ⟩
⇓-preserve (⊢sub ⊢M A<:B) ⊢μ pc≾gc M⇓V =
let ⟨ Σ′ , Σ′⊇Σ , ⊢V , ⊢μ′ ⟩ = ⇓-preserve ⊢M ⊢μ pc≾gc M⇓V in
⟨ Σ′ , Σ′⊇Σ , ⊢sub ⊢V A<:B , ⊢μ′ ⟩
⇓-preserve (⊢sub-pc ⊢M gc<:gc′) ⊢μ pc≾gc M⇓V =
let ⟨ Σ′ , Σ′⊇Σ , ⊢V , ⊢μ′ ⟩ = ⇓-preserve ⊢M ⊢μ (≾-<: pc≾gc gc<:gc′) M⇓V in
⟨ Σ′ , Σ′⊇Σ , ⊢sub-pc ⊢V gc<:gc′ , ⊢μ′ ⟩