forked from graphdeco-inria/hierarchical-3d-gaussians
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_coarse.py
193 lines (157 loc) · 8.54 KB
/
train_coarse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#
# Copyright (C) 2023 - 2024, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import torch
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render_coarse, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from torch.utils.data import DataLoader
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
def direct_collate(x):
return x
def training(dataset, opt, pipe, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
prepare_output_and_logger(dataset)
gaussians = GaussianModel(1)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
#viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
target = 0
indices = None
iteration = first_iter
training_generator = DataLoader(scene.getTrainCameras(), num_workers = 8, prefetch_factor = 1, persistent_workers = True, collate_fn=direct_collate)
for param_group in gaussians.optimizer.param_groups:
if param_group["name"] == "xyz":
param_group['lr'] = 0.0
while iteration < opt.iterations + 1:
for viewpoint_batch in training_generator:
for viewpoint_cam in viewpoint_batch:
background = torch.rand((3), dtype=torch.float32, device="cuda")
viewpoint_cam.world_view_transform = viewpoint_cam.world_view_transform.cuda()
viewpoint_cam.projection_matrix = viewpoint_cam.projection_matrix.cuda()
viewpoint_cam.full_proj_transform = viewpoint_cam.full_proj_transform.cuda()
viewpoint_cam.camera_center = viewpoint_cam.camera_center.cuda()
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render_coarse(custom_cam, gaussians, pipe, background, scaling_modifer, indices = indices)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
render_pkg = render_coarse(viewpoint_cam, gaussians, pipe, background, indices = indices)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = (viewpoint_cam.original_image.cuda().float() / 255.0)
if viewpoint_cam.alpha_mask is not None:
alpha_mask = (viewpoint_cam.alpha_mask.cuda().float() / 255.0)
Ll1 = l1_loss(image * alpha_mask, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image * alpha_mask, gt_image))
else:
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii)
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}", "Size": f"{gaussians._xyz.size(0)}", "Peak memory": f"{torch.cuda.max_memory_allocated(device='cuda')}"})
progress_bar.update(10)
# Log and save
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
if iteration == opt.iterations:
progress_bar.close()
training_generator._get_iterator()._shutdown_workers()
return
# Optimizer step
if iteration < opt.iterations:
gaussians._scaling.grad[:gaussians.skybox_points,:] = 0
relevant = (gaussians._opacity.grad != 0).nonzero()
gaussians.optimizer.step(relevant)
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
with torch.no_grad():
vals, _ = gaussians.get_scaling.max(dim=1)
violators = vals > scene.cameras_extent * 0.1
violators[:gaussians.skybox_points] = False
gaussians._scaling[violators] = gaussians.scaling_inverse_activation(gaussians.get_scaling[violators] * 0.8)
iteration += 1
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--save_iterations", nargs="+", type=int, default=[30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")