The Point Cloud Library (version > 1.8) is required for this function. Follow the instructions below to install PCL (tested on Ubuntu 20.04 LTS):
sudo apt-get update
sudo apt-get install cmake cmake-gui
sudo apt-get install libflann-dev
sudo apt-get install libeigen3-dev
sudo apt-get install libboost-all-dev
sudo apt-get install libvtk6-dev
sudo apt-get install libpcap-dev
cd ~ && mkdir PCL && cd PCL
wget https://github.com/PointCloudLibrary/pcl/releases/download/pcl-1.11.1-rc2/source.tar.gz
tar -zxvf source.tar.gz
mv pcl pcl-1.11.1 && cd pcl-1.11.1 && mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j8
sudo make -j8 install
Also, official installation documentation is available for reference.
When the environment is ready, please run the compile script:
cd src/PCL
bash install.sh
After that, a bin file PCL_Preprocessing_Outlier_Removeo
could be found in bin
folder.
Then modify config.yaml
to specify the path to the data, and run
python batch_pcl_remove_outliers.py -conf config.yaml
The Computational Geometry Algorithms Library (CGAL) (version > 5.1.2) is required for this function. Follow the instructions below to install CGAL (tested on Ubuntu 20.04 LTS):
sudo sudo apt-get update
sudo apt-get install cmake cmake-gui
sudo apt-get install libgmp-dev libmpfr-dev
# Note that, the above command may be fail.
# If failed, try to manual install the packages
cd ~ && mkdir GMP && cd GMP
wget https://ftp.gnu.org/gnu/gmp/gmp-6.2.1.tar.xz
tar -xvJf gmp-6.2.1.tar.xz
cd gmp-6.2.1
./configure
make
sudo make install
cd ~ && mkdir MPFR && cd MPFR
wget https://www.mpfr.org/mpfr-current/mpfr-4.1.0.tar.xz
tar -xvJf mpfr-4.1.0.tar.xz
cd mpfr-4.1.0
./configure
make
sudo make install
cd ~ && mkdir CGAL && cd CGAL
wget https://github.com/CGAL/cgal/releases/download/v5.3/CGAL-5.3-examples.tar.xz
wget https://github.com/CGAL/cgal/releases/download/v5.3/CGAL-5.3.tar.xz
tar -xvJf CGAL-5.3-examples.tar.xz
tar -xvJf CGAL-5.3.tar.xz
cd CGAL-5.3 && mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
sudo make install
When the environment is ready, please run the compile script:
cd src/CGAL_Preprocess
bash install.sh
After that, a bin file cgal_Preprocessing
could be found in bin
folder.
Then modify config.yaml
to specify the path to the data, and run
python batch_cgal_prepocessing_smooth.py -conf config.yaml
We use Farthest Point Sampling here, and Pytorch with CUDA environment is required here.
Modify config.yaml
to specify the path to the data, and run
python batch_FPS_torch.py -conf config.yaml
python txt2ply.py --In_txt_Dir INPUT_TXT_FILE_DIRECTORY --Out_ply_Dir OUTPUT_PLY_FILE_DIRECTORY