-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathgcs_to_gcs.py
181 lines (158 loc) · 6.83 KB
/
gcs_to_gcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import sys
from pyspark.sql import SparkSession, DataFrame, DataFrameWriter
from dataproc_templates import BaseTemplate
import dataproc_templates.util.template_constants as constants
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_cloud_storage
from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage
__all__ = ['GCSToGCSTemplate']
class GCSToGCSTemplate(BaseTemplate):
"""
Dataproc template implementing loads from Cloud Storage into Cloud Storage post SQL transformation
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.GCS_TO_GCS_INPUT_LOCATION}',
dest=constants.GCS_TO_GCS_INPUT_LOCATION,
required=True,
help='Cloud Storage location of the input files'
)
parser.add_argument(
f'--{constants.GCS_TO_GCS_INPUT_FORMAT}',
dest=constants.GCS_TO_GCS_INPUT_FORMAT,
required=True,
help='Cloud Storage input file format (one of: avro,parquet,csv,json,delta)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON,
constants.FORMAT_DELTA
]
)
add_spark_options(parser, constants.get_csv_input_spark_options("gcs.gcs.input."))
add_spark_options(parser, constants.get_csv_output_spark_options("gcs.gcs.output."))
parser.add_argument(
f'--{constants.GCS_TO_GCS_TEMP_VIEW_NAME}',
dest=constants.GCS_TO_GCS_TEMP_VIEW_NAME,
required=False,
default="",
help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query'
)
parser.add_argument(
f'--{constants.GCS_TO_GCS_SQL_QUERY}',
dest=constants.GCS_TO_GCS_SQL_QUERY,
required=False,
default="",
help='SQL query for data transformation. This must use the temp view name as the table to query from.'
)
parser.add_argument(
f'--{constants.GCS_TO_GCS_OUTPUT_PARTITION_COLUMN}',
dest=constants.GCS_TO_GCS_OUTPUT_PARTITION_COLUMN,
required=False,
default="",
help='Partition column name to partition the final output in destination bucket'
)
parser.add_argument(
f'--{constants.GCS_TO_GCS_OUTPUT_FORMAT}',
dest=constants.GCS_TO_GCS_OUTPUT_FORMAT,
required=False,
default=constants.FORMAT_PRQT,
help=(
'Output write format '
'(one of: avro,parquet,csv,json)'
'(Defaults to parquet)'
),
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.GCS_TO_GCS_OUTPUT_MODE}',
dest=constants.GCS_TO_GCS_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.GCS_TO_GCS_OUTPUT_LOCATION}',
dest=constants.GCS_TO_GCS_OUTPUT_LOCATION,
required=True,
help=(
'Destination Cloud Storage location'
)
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
if getattr(known_args, constants.GCS_TO_GCS_SQL_QUERY) and not getattr(known_args, constants.GCS_TO_GCS_TEMP_VIEW_NAME):
sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query')
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_location: str = args[constants.GCS_TO_GCS_INPUT_LOCATION]
input_format: str = args[constants.GCS_TO_GCS_INPUT_FORMAT]
gcs_temp_view: str = args[constants.GCS_TO_GCS_TEMP_VIEW_NAME]
sql_query: str = args[constants.GCS_TO_GCS_SQL_QUERY]
output_partition_column: str = args[constants.GCS_TO_GCS_OUTPUT_PARTITION_COLUMN]
output_mode: str = args[constants.GCS_TO_GCS_OUTPUT_MODE]
output_format: str = args[constants.GCS_TO_GCS_OUTPUT_FORMAT]
output_location: str = args[constants.GCS_TO_GCS_OUTPUT_LOCATION]
logger.info(
"Starting Cloud Storage to Cloud Storage with tranformations Spark job with parameters:\n"
f"{pprint.pformat(args)}"
)
# Read
input_data = ingest_dataframe_from_cloud_storage(
spark,
args,
input_location,
input_format,
"gcs.gcs.input.",
avro_format_override=constants.FORMAT_AVRO
)
if sql_query:
# Create temp view on source data
input_data.createOrReplaceTempView(gcs_temp_view)
# Execute SQL
output_data = spark.sql(sql_query)
else:
output_data = input_data
# Write
if output_partition_column:
writer: DataFrameWriter = output_data.write.mode(output_mode).partitionBy(output_partition_column)
else:
writer: DataFrameWriter = output_data.write.mode(output_mode)
persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "gcs.gcs.output.")