-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathcassandra_to_gcs.py
169 lines (145 loc) · 6.68 KB
/
cassandra_to_gcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import sys
from pyspark.sql import SparkSession, DataFrame, DataFrameWriter
from dataproc_templates import BaseTemplate
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage
import dataproc_templates.util.template_constants as constants
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession
__all__ = ['CassandraToGCSTemplate']
class CassandraToGCSTemplate(BaseTemplate):
"""
Dataproc template implementing exports from CASSANDRA to GCS
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.CASSANDRA_TO_GCS_INPUT_HOST}',
dest=constants.CASSANDRA_TO_GCS_INPUT_HOST,
required=True,
help='CASSANDRA Cloud Storage Input Host IP'
)
parser.add_argument(
f'--{constants.CASSANDRA_TO_GCS_OUTPUT_FORMAT}',
dest=constants.CASSANDRA_TO_GCS_OUTPUT_FORMAT,
required=True,
help='Output file format (one of: avro,parquet,csv,json)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.CASSANDRA_TO_GCS_OUTPUT_PATH}',
dest=constants.CASSANDRA_TO_GCS_OUTPUT_PATH,
required=True,
help='Cloud Storage location for output files'
)
parser.add_argument(
f'--{constants.CASSANDRA_TO_GCS_OUTPUT_SAVEMODE}',
dest=constants.CASSANDRA_TO_GCS_OUTPUT_SAVEMODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.CASSANDRA_TO_GCS_CATALOG}',
dest=constants.CASSANDRA_TO_GCS_CATALOG,
required=False,
default="casscon",
help='To provide a name for connection between Cassandra and GCS'
)
parser.add_argument(
f'--{constants.CASSANDRA_TO_GCS_QUERY}',
dest=constants.CASSANDRA_TO_GCS_QUERY,
required=False,
help='Optional query for selective exports'
)
parser.add_argument(
f'--{constants.CASSANDRA_TO_GCS_INPUT_KEYSPACE}',
dest=constants.CASSANDRA_TO_GCS_INPUT_KEYSPACE,
required=(constants.CASSANDRA_TO_GCS_QUERY is None),
help='CASSANDRA Cloud Storage Input Keyspace'
)
parser.add_argument(
f'--{constants.CASSANDRA_TO_GCS_INPUT_TABLE}',
dest=constants.CASSANDRA_TO_GCS_INPUT_TABLE,
required=(constants.CASSANDRA_TO_GCS_QUERY is None),
help='CASSANDRA Cloud Storage Input Table'
)
add_spark_options(parser, constants.get_csv_output_spark_options("cassandra.gcs.output."))
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
if (not getattr(known_args, constants.CASSANDRA_TO_GCS_QUERY)
and (not getattr(known_args, constants.CASSANDRA_TO_GCS_INPUT_KEYSPACE)
or not getattr(known_args, constants.CASSANDRA_TO_GCS_INPUT_TABLE))):
sys.exit("ArgumentParser Error: Either of cassandratogcs.input.keyspace and cassandratogcs.input.table "
+ "OR cassandratogcs.input.query needs to be provided as argument to read data from Cassandra")
elif (getattr(known_args, constants.CASSANDRA_TO_GCS_QUERY)
and (getattr(known_args, constants.CASSANDRA_TO_GCS_INPUT_KEYSPACE)
or getattr(known_args, constants.CASSANDRA_TO_GCS_INPUT_TABLE))):
sys.exit("ArgumentParser Error: Both cassandratogcs.input.keyspace and cassandratogcs.input.table "
+ "AND cassandratogcs.input.query cannot be provided as arguments at the same time.")
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_host: str = args[constants.CASSANDRA_TO_GCS_INPUT_HOST]
input_keyspace: str = args[constants.CASSANDRA_TO_GCS_INPUT_KEYSPACE]
input_table: str = args[constants.CASSANDRA_TO_GCS_INPUT_TABLE]
output_format: str = args[constants.CASSANDRA_TO_GCS_OUTPUT_FORMAT]
output_location: str = args[constants.CASSANDRA_TO_GCS_OUTPUT_PATH]
output_mode: str = args[constants.CASSANDRA_TO_GCS_OUTPUT_SAVEMODE]
catalog: str = args[constants.CASSANDRA_TO_GCS_CATALOG]
query: str = args[constants.CASSANDRA_TO_GCS_QUERY]
logger.info(
"Starting CASSANDRA to Cloud Storage spark job with parameters:\n"
f"{pprint.pformat(args)}"
)
# Set configuration to connect to Cassandra by overwriting the spark session
spark = (
SparkSession
.builder
.appName("CassandraToGCS")
.config(constants.SQL_EXTENSION, constants.CASSANDRA_EXTENSION)
.config(f"spark.sql.catalog.{catalog}", constants.CASSANDRA_CATALOG)
.config(f"spark.sql.catalog.{catalog}.spark.cassandra.connection.host",input_host)
.getOrCreate())
# Read
if(not query):
input_data = spark.read.table(f"{catalog}.{input_keyspace}.{input_table}")
else:
input_data = spark.sql(query)
# Write
writer: DataFrameWriter = input_data.write.mode(output_mode)
persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "cassandratogcs.output.")