-
Notifications
You must be signed in to change notification settings - Fork 96
/
gcs_to_bigtable.py
139 lines (118 loc) · 4.98 KB
/
gcs_to_bigtable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
from pyspark.sql import SparkSession
from dataproc_templates import BaseTemplate
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_cloud_storage
import dataproc_templates.util.template_constants as constants
from google.cloud import storage
__all__ = ['GCSToBigTableTemplate']
class GCSToBigTableTemplate(BaseTemplate):
"""
Dataproc template implementing loads from GCS into BigTable
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.GCS_BT_INPUT_LOCATION}',
dest=constants.GCS_BT_INPUT_LOCATION,
required=True,
help='Cloud Storage location of the input files'
)
parser.add_argument(
f'--{constants.GCS_BT_INPUT_FORMAT}',
dest=constants.GCS_BT_INPUT_FORMAT,
required=True,
help='Input file format (one of: avro,parquet,csv,json,delta)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON,
constants.FORMAT_DELTA
]
)
parser.add_argument(
f'--{constants.GCS_BT_PROJECT_ID}',
dest=constants.GCS_BT_PROJECT_ID,
required=True,
help='BigTable project ID'
)
parser.add_argument(
f'--{constants.GCS_BT_INSTANCE_ID}',
dest=constants.GCS_BT_INSTANCE_ID,
required=True,
help='BigTable instance ID'
)
parser.add_argument(
f'--{constants.GCS_BT_CREATE_NEW_TABLE}',
dest=constants.GCS_BT_CREATE_NEW_TABLE,
required=False,
help='BigTable create new table flag. Default is false.',
default=False
)
parser.add_argument(
f'--{constants.GCS_BT_BATCH_MUTATE_SIZE}',
dest=constants.GCS_BT_BATCH_MUTATE_SIZE,
required=False,
help='BigTable batch mutate size. Maximum allowed size is 100000. Default is 100.',
default=100
)
add_spark_options(parser, constants.get_csv_input_spark_options("gcs.bigtable.input."))
parser.add_argument(
f'--{constants.GCS_BT_CATALOG_JSON}',
dest=constants.GCS_BT_CATALOG_JSON,
required=True,
help='BigTable catalog json stored file GCS location'
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_location: str = args[constants.GCS_BT_INPUT_LOCATION]
input_format: str = args[constants.GCS_BT_INPUT_FORMAT]
project_id: str = args[constants.GCS_BT_PROJECT_ID]
instance_id: str = args[constants.GCS_BT_INSTANCE_ID]
create_new_table: bool = args[constants.GCS_BT_CREATE_NEW_TABLE]
batch_mutate_size: int = args[constants.GCS_BT_BATCH_MUTATE_SIZE]
logger.info(
"Starting Cloud Storage to BigTable Spark job with parameters:\n"
f"{pprint.pformat(args)}"
)
# Read Catalog From GCS
storage_client = storage.Client()
bucket = storage_client.bucket(args[constants.GCS_BT_CATALOG_JSON].split('/')[2])
blob = bucket.blob('/'.join(args[constants.GCS_BT_CATALOG_JSON].split('/')[3:]))
catalog = blob.download_as_text()
logger.info(f"Catalog: {catalog}")
# Read
input_data = ingest_dataframe_from_cloud_storage(
spark, args, input_location, input_format, "gcs.bigtable.input."
)
# Write
input_data.write \
.format(constants.FORMAT_BIGTABLE) \
.options(catalog=catalog) \
.option(constants.GCS_BT_PROJECT_ID, project_id) \
.option(constants.GCS_BT_INSTANCE_ID, instance_id) \
.option(constants.GCS_BT_CREATE_NEW_TABLE, create_new_table) \
.option(constants.GCS_BT_BATCH_MUTATE_SIZE, batch_mutate_size) \
.save()