-
Notifications
You must be signed in to change notification settings - Fork 96
/
gcs_to_bigquery.py
129 lines (112 loc) · 4.58 KB
/
gcs_to_bigquery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
from pyspark.sql import SparkSession
from dataproc_templates import BaseTemplate
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_cloud_storage
import dataproc_templates.util.template_constants as constants
__all__ = ['GCSToBigQueryTemplate']
class GCSToBigQueryTemplate(BaseTemplate):
"""
Dataproc template implementing loads from GCS into BigQuery
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.GCS_BQ_INPUT_LOCATION}',
dest=constants.GCS_BQ_INPUT_LOCATION,
required=True,
help='Cloud Storage location of the input files'
)
parser.add_argument(
f'--{constants.GCS_BQ_OUTPUT_DATASET}',
dest=constants.GCS_BQ_OUTPUT_DATASET,
required=True,
help='BigQuery dataset for the output table'
)
parser.add_argument(
f'--{constants.GCS_BQ_OUTPUT_TABLE}',
dest=constants.GCS_BQ_OUTPUT_TABLE,
required=True,
help='BigQuery output table name'
)
parser.add_argument(
f'--{constants.GCS_BQ_INPUT_FORMAT}',
dest=constants.GCS_BQ_INPUT_FORMAT,
required=True,
help='Input file format (one of: avro,parquet,csv,json,delta)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON,
constants.FORMAT_DELTA
]
)
add_spark_options(parser, constants.get_csv_input_spark_options("gcs.bigquery.input."))
parser.add_argument(
f'--{constants.GCS_BQ_LD_TEMP_BUCKET_NAME}',
dest=constants.GCS_BQ_LD_TEMP_BUCKET_NAME,
required=True,
help='Spark BigQuery connector temporary bucket'
)
parser.add_argument(
f'--{constants.GCS_BQ_OUTPUT_MODE}',
dest=constants.GCS_BQ_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_location: str = args[constants.GCS_BQ_INPUT_LOCATION]
input_format: str = args[constants.GCS_BQ_INPUT_FORMAT]
big_query_dataset: str = args[constants.GCS_BQ_OUTPUT_DATASET]
big_query_table: str = args[constants.GCS_BQ_OUTPUT_TABLE]
bq_temp_bucket: str = args[constants.GCS_BQ_LD_TEMP_BUCKET_NAME]
output_mode: str = args[constants.GCS_BQ_OUTPUT_MODE]
logger.info(
"Starting Cloud Storage to BigQuery Spark job with parameters:\n"
f"{pprint.pformat(args)}"
)
# Read
input_data = ingest_dataframe_from_cloud_storage(
spark, args, input_location, input_format, "gcs.bigquery.input."
)
# Write
input_data.write \
.format(constants.FORMAT_BIGQUERY) \
.option(constants.TABLE, big_query_dataset + "." + big_query_table) \
.option(constants.GCS_BQ_TEMP_BUCKET, bq_temp_bucket) \
.mode(output_mode) \
.save()