-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path27.php
55 lines (53 loc) · 1.65 KB
/
27.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
<!--
Euler discovered the remarkable quadratic formula:
n² + n + 41
It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 40pow(2) + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 41² + 41 + 41 is clearly divisible by 41.
The incredible formula n² 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, 79 and 1601, is 126479.
Considering quadratics of the form:
n² + an + b, where |a| 1000 and |b| 1000
where |n| is the modulus/absolute value of n
e.g. |11| = 11 and |4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.
-->
<?php $startTime = microtime(true);
function isPrime($input)
{
$input = sqrt($input*$input);//this accounts for minus values
$sq = sqrt($input);
for ($i=2; $i <= $sq; $i++) {
if ($input%$i==0) {
return false;
}
}
return true;
}
$storeCount = 0;
$storedA = 0;
$storedB = 0;
for ($a=-999; $a < 1000; $a++) {
if (isPrime($a)) {
for ($b=$a; $b < 1000; $b++) {
if (isPrime($b)) {
$count = 0;
$i = 0;
$formulaVal = ($i*$i) + ($a*$i)+$b;
while (isPrime($formulaVal)) {
$count++;
$i++;
$formulaVal = ($i*$i) + ($a*$i)+$b;
}
if ($count > $storeCount) {
$storeCount = $count;
$storedA = $a;
$storedB = $b;
}
}
}
}
}
$multiply = $storedA*$storedB;
$answer = $multiply;
$endTime = microtime(true);
echo "Answer: ",$answer,"\nTime: ",($endTime - $startTime),"\n";
// Answer: -59231
// Time: 0.57s