-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
executable file
·269 lines (223 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import shutil
import time
import numpy as np
import torch
import torch.nn as nn
import pandas as pd
import matplotlib.pyplot as plt
from collections import deque
from rl import ppo
from rl.networks import network_utils
from arguments import get_args
from rl.networks.envs import make_vec_envs
from rl.networks.model import Policy
from rl.networks.storage import RolloutStorage
from move_plan.configs.config import Config
from ped_sim import *
def main():
"""
main function for training a robot policy network
"""
# read arguments
algo_args = get_args()
# create a directory for saving the logs and weights
if not os.path.exists(algo_args.output_dir):
os.makedirs(algo_args.output_dir)
# if output_dir exists and overwrite = False
elif not algo_args.overwrite:
raise ValueError('output_dir already exists!')
save_config_dir = os.path.join(algo_args.output_dir, 'configs')
if not os.path.exists(save_config_dir):
os.makedirs(save_config_dir)
shutil.copy('move_plan/configs/config.py', save_config_dir)
shutil.copy('move_plan/configs/__init__.py', save_config_dir)
shutil.copy('arguments.py', algo_args.output_dir)
env_config = config = Config()
torch.manual_seed(algo_args.seed)
torch.cuda.manual_seed_all(algo_args.seed)
if algo_args.cuda:
if algo_args.cuda_deterministic:
# reproducible but slower
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
# not reproducible but faster
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.set_num_threads(algo_args.num_threads)
device = torch.device("cuda" if algo_args.cuda else "cpu")
env_name = algo_args.env_name
if config.sim.render:
algo_args.num_processes = 1
algo_args.num_mini_batch = 1
# for visualization
if config.sim.render:
fig, ax = plt.subplots()
plt.ion()
plt.show()
else:
ax = None
fig = None
# Create a wrapped, monitored VecEnv
envs = make_vec_envs(env_name, algo_args.seed, algo_args.num_processes,
algo_args.gamma, '', device, False, config=env_config,
ax=ax, fig=fig, pretext_wrapper=config.env.use_wrapper)
# create a policy network
actor_critic = Policy(
envs.observation_space.spaces, # pass the Dict into policy to parse
envs.action_space,
base_kwargs=algo_args,
base=config.robot.policy)
# storage buffer to store the agent's experience
rollouts = RolloutStorage(algo_args.num_steps,
algo_args.num_processes,
envs.observation_space.spaces,
envs.action_space,
algo_args.human_node_rnn_size,
algo_args.human_human_edge_rnn_size)
# continue training from an existing model if resume = True
if algo_args.resume:
load_path = config.training.load_path
actor_critic.load_state_dict(torch.load(load_path))
print("Loaded the following checkpoint:", load_path)
# allow the usage of multiple GPUs to increase the number of examples processed simultaneously
nn.DataParallel(actor_critic).to(device)
# create the ppo optimizer
agent = ppo.PPO(
actor_critic,
algo_args.clip_param,
algo_args.ppo_epoch,
algo_args.num_mini_batch,
algo_args.value_loss_coef,
algo_args.entropy_coef,
lr=algo_args.lr,
eps=algo_args.eps,
max_grad_norm=algo_args.max_grad_norm)
obs = envs.reset()
if isinstance(obs, dict):
for key in obs:
rollouts.obs[key][0].copy_(obs[key])
else:
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=100)
start = time.time()
num_updates = int(
algo_args.num_env_steps) // algo_args.num_steps // algo_args.num_processes
# start the training loop
for j in range(num_updates):
# schedule learning rate if needed
if algo_args.use_linear_lr_decay and j>algo_args.lr_decay_start_epoch:
start_j = algo_args.lr_decay_start_epoch
network_utils.update_linear_schedule(
agent.optimizer, (j-start_j), (num_updates-start_j),
agent.optimizer.lr if algo_args.algo == "acktr" else algo_args.lr)
# step the environment for a few times
for step in range(algo_args.num_steps):
# Sample actions
with torch.no_grad():
rollouts_obs = {}
for key in rollouts.obs:
rollouts_obs[key] = rollouts.obs[key][step]
rollouts_hidden_s = {}
for key in rollouts.recurrent_hidden_states:
rollouts_hidden_s[key] = rollouts.recurrent_hidden_states[key][step]
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts_obs, rollouts_hidden_s,
rollouts.masks[step])
# if we use prediction, send predictions to env for rendering
if env_name == 'PedSimPred-v0' and env_config.env.use_wrapper:
# [nenv, max_human_num, 2*(pred_steps+1)] -> [nenv, max_human_num, 2*pred_steps]
if config.sim.uncertainty_aware:
out_pred = rollouts_obs['pred_pos'][:, :, 6:].to('cpu')
else:
# [nenv, max_human_num, 2*pred_steps]
out_pred = rollouts_obs['spatial_edges'][:, :, 2:].to('cpu')
next_obs = rollouts_obs['ped_pos'] # [nenv, obs_len, max_human_num, 5]
next_mask = rollouts_obs['ped_mask'] # [nenv, obs_len, max_human_num]
# Combining the three above tensors, to send it as one tensor to the environment
# throught talk2Env, we can do so since our pred_len and obs_len are equal
if config.sim.uncertainty_aware:
data = torch.zeros(envs.num_envs, config.sim.pred_len,
config.sim.max_human_num, 12)
data[:,:,:,:6] = out_pred.reshape(envs.num_envs, config.sim.max_human_num,
config.sim.pred_len, 6).permute(0, 2, 1, 3)
data[:,:,:,6:11] = next_obs
data[:,:,:,11] = next_mask
else:
data = torch.zeros(envs.num_envs, config.sim.pred_len,
config.sim.max_human_num, 8)
data[:,:,:,:2] = out_pred.reshape(envs.num_envs, config.sim.max_human_num,
config.sim.pred_len, 2).permute(0, 2, 1, 3)
data[:,:,:,2:7] = next_obs
data[:,:,:,7] = next_mask
# Passsing the predicted traj of peds calcualated in VecPretextNormalize
# to the environment for rendering
ack = envs.talk2Env(data)
assert all(ack)
if config.sim.render:
envs.render()
# Obser reward and next obs
obs, reward, done, infos = envs.step(action)
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
rollouts.insert(obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks)
# store the stepped experience to buffer
with torch.no_grad():
rollouts_obs = {}
for key in rollouts.obs:
rollouts_obs[key] = rollouts.obs[key][-1]
rollouts_hidden_s = {}
for key in rollouts.recurrent_hidden_states:
rollouts_hidden_s[key] = rollouts.recurrent_hidden_states[key][-1]
next_value = actor_critic.get_value(
rollouts_obs, rollouts_hidden_s,
rollouts.masks[-1]).detach()
# compute advantage and gradient, and update the network parameters
rollouts.compute_returns(next_value, algo_args.use_gae, algo_args.gamma,
algo_args.gae_lambda, algo_args.use_proper_time_limits)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# save the model for every interval-th episode or for the last epoch
if (j % algo_args.save_interval == 0
or j == num_updates - 1):
save_path = os.path.join(algo_args.output_dir, 'checkpoints')
if not os.path.exists(save_path):
os.mkdir(save_path)
torch.save(actor_critic.state_dict(), os.path.join(save_path, '%.5i' % j + ".pt"))
if j % algo_args.log_interval == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * algo_args.num_processes * algo_args.num_steps
end = time.time()
print(
"Updates {}, num timesteps {}, FPS {} \n "
"Last {} training episodes: mean/median reward "
"{:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n"
.format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards), np.mean(episode_rewards),
np.median(episode_rewards), np.min(episode_rewards),
np.max(episode_rewards)))
df = pd.DataFrame({'misc/nupdates': [j],
'misc/total_timesteps': [total_num_steps],
'fps': int(total_num_steps / (end - start)),
'eprewmean': [np.mean(episode_rewards)],
'loss/policy_entropy': dist_entropy,
'loss/policy_loss': action_loss,
'loss/value_loss': value_loss})
if os.path.exists(os.path.join(algo_args.output_dir, 'progress.csv')) and j > 20:
df.to_csv(os.path.join(algo_args.output_dir, 'progress.csv'),
mode='a', header=False, index=False)
else:
df.to_csv(os.path.join(algo_args.output_dir, 'progress.csv'),
mode='w', header=True, index=False)
if __name__ == '__main__':
main()