forked from rasbt/LLMs-from-scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_dataset.py
85 lines (66 loc) · 3.47 KB
/
prepare_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
"""
Script that processes the Project Gutenberg files into fewer larger files.
"""
import argparse
import os
import re
from tqdm import tqdm
from gutenberg.src.cleanup import strip_headers
def is_english(text, threshold=0.9):
ascii_chars = sum(1 for c in text if ord(c) < 128)
return ascii_chars / len(text) > threshold
def combine_files(file_paths, target_dir, max_size_mb=500, separator="<|endoftext|>", fallback_encoding="latin1"):
if not os.path.exists(target_dir):
os.makedirs(target_dir)
current_content = []
current_size = 0
file_counter = 1
for file_path in tqdm(file_paths):
try:
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
except UnicodeDecodeError:
# Attempt to read the file with a fallback encoding
tqdm.write(f"Warning: UnicodeDecodeError encountered. Trying fallback encoding for {file_path}")
with open(file_path, "r", encoding=fallback_encoding) as file:
content = file.read()
if not is_english(content):
tqdm.write(f"Skipping {file_path} as it does not contain primarily English text.")
continue
content = strip_headers(content)
# Regular expression to replace multiple blank lines with a single blank line
content = re.sub(r'\n\s*\n', '\n\n', content)
estimated_size = len(content.encode("utf-8"))
if current_size + estimated_size > max_size_mb * 1024 * 1024:
target_file_path = os.path.join(target_dir, f"combined_{file_counter}.txt")
with open(target_file_path, "w", encoding="utf-8") as target_file:
target_file.write(separator.join(current_content))
file_counter += 1
current_content = [content]
current_size = estimated_size
else:
current_content.append(content)
current_size += estimated_size
if current_content:
target_file_path = os.path.join(target_dir, f"combined_{file_counter}.txt")
with open(target_file_path, "w", encoding="utf-8") as target_file:
target_file.write(separator.join(current_content))
return file_counter
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Preprocess and combine text files for pretraining")
parser.add_argument("--data_dir", type=str, default="gutenberg/data/raw",
help="Directory containing the downloaded raw training data")
parser.add_argument("--max_size_mb", type=int, default=500,
help="The maximum file size for each concatenated file in megabytes")
parser.add_argument("--output_dir", type=str, default="gutenberg_preprocessed",
help="Directory where the preprocessed data will be saved")
args = parser.parse_args()
all_files = [os.path.join(path, name) for path, subdirs, files in os.walk(args.data_dir)
for name in files if name.endswith((".txt", ".txt.utf8"))]
print(f"{len(all_files)} file(s) to process.")
file_counter = combine_files(all_files, args.output_dir, max_size_mb=args.max_size_mb)
print(f"{file_counter} file(s) saved in {os.path.abspath(args.output_dir)}")