generated from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxgboost.yaml
51 lines (41 loc) · 1.49 KB
/
xgboost.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# @package _global_
defaults:
- override /hydra/sweeper: optuna
# choose metric which will be optimized by Optuna
optimized_metric: "mean_absolute_error"
optimized_mean: "cv_mean"
# here we define Optuna hyperparameter search
# it optimizes for value returned from function with @hydra.main decorator
# docs: https://hydra.cc/docs/plugins/optuna_sweeper/
hydra:
sweeper:
_target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper
# storage URL to persist optimization results
# for example, you can use SQLite if you set 'sqlite:///example.db'
storage: null
# name of the study to persist optimization results
study_name: null
# number of parallel workers
n_jobs: 1
# 'minimize' or 'maximize' the objective
direction: minimize
# total number of runs that will be executed
n_trials: 200
# choose Optuna hyperparameter sampler
# docs: https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
sampler:
_target_: optuna.samplers.TPESampler
seed: ${seed}
consider_prior: true
prior_weight: 1.0
consider_magic_clip: true
consider_endpoints: false
n_startup_trials: 50
n_ei_candidates: 10
multivariate: false
warn_independent_sampling: true
# define range of hyperparameters
params:
model.learning_rate: tag(log, interval(0.0001, 1))
model.max_depth: choice(3, 4, 5, 6, 7, 8)
model.gamma: choice(0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0)