forked from incanter/incanter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayes.clj
145 lines (121 loc) · 5.5 KB
/
bayes.clj
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
;;; examples/bayes.clj -- Bayesian estimation library for Clojure
;; by David Edgar Liebke http://incanter.org
;; March 11, 2009
;; Copyright (c) David Edgar Liebke, 2009. All rights reserved. The use
;; and distribution terms for this software are covered by the Eclipse
;; Public License 1.0 (http://opensource.org/licenses/eclipse-1.0.php)
;; which can be found in the file epl-v10.html at the root of this
;; distribution. By using this software in any fashion, you are
;; agreeing to be bound by the terms of this license. You must not
;; remove this notice, or any other, from this software.
;; CHANGE LOG
;; March 11, 2009: First version
(ns examples.bayes
(:use (incanter core stats)))
(defn bayes-regression-noref [N x y]
"
This function implements the Gibbs sampling example using full conditional in OLS
from Scott Lynch book 'Introduction to Applied Bayesian Statistics in the Social
Sciences (page 171). This version is purely functional with no mutability.
"
(let [lm (linear-model y x :intercept false)
pars (trans (:coefs lm))
xtxi (solve (mmult (trans x) x))
nx (ncol x)
shape (/ (- (nrow x) (ncol x)) 2)]
(loop [coefs (transient [[0 0 0 0 0 0 0 0 0]])
variances (transient [1])
i 0]
(if (= i N)
{:coef (matrix (persistent! coefs)) :var (persistent! variances)}
(let [b (to-list (plus pars (mmult (trans (sample-normal nx))
(decomp-cholesky (mult xtxi (variances i))))))
resid (minus y (mmult x b))
s2 (/ 1 (sample-gamma 1 :shape shape :rate (mult (mmult (trans resid) resid) 0.5) ))]
(recur (conj! coefs b) (conj! variances s2) (inc i)))))))
(defn bayes-regression-full [N x y]
"
This function implements the Gibbs sampling example using full conditional in OLS
from Scott Lynch book 'Introduction to Applied Bayesian Statistics in the Social
Sciences (page 171). This version uses mutability (i.e. references)
"
(let [lm (linear-model y x :intercept false)
pars (trans (:coefs lm))
xtxi (solve (mmult (trans x) x))
nx (ncol x)
b (ref [[0 0 0 0 0 0 0 0 0]])
s2 (ref [1])
resid (ref 0)
shape (/ (- (nrow x) (ncol x)) 2)]
(do
(dotimes [i N]
(dosync
(alter b conj
(to-list (plus pars (mmult (trans (sample-normal nx)) (decomp-cholesky (mult xtxi (@s2 i)))))))
(ref-set resid (minus y (mmult x (@b (inc i)))))
(alter s2 conj (/ 1 (sample-gamma 1 :shape shape :rate (mult (mmult (trans @resid) @resid) 0.5) )))))
;; return a map with the estimated coefficients and variances
{:coef (matrix @b) :var @s2})))
(defn bayes-regression [N x y]
"
This function implements the Gibbs sampling example using the composition method
in OLS from Scott Lynch book 'Introduction to Applied Bayesian Statistics in the
Social Sciences (page 173)
"
(let [lm (linear-model y x :intercept false)
pars (:coefs lm)
xtxi (solve (mmult (trans x) x))
resid (:residuals lm)
shape (/ (- (nrow x) (ncol x)) 2)
rate (mult 1/2 (mmult (trans resid) resid))
s-sq (div 1 (sample-gamma N :shape shape :rate rate))]
;; return a map with the estimated coefficients and variances
{:coef
(matrix
;(pmap ;; run a parallel map over the values of s-sq
(map
(fn [s2]
(to-list (plus (trans pars)
(mmult (trans (sample-normal (ncol x)))
(decomp-cholesky (mult s2 xtxi))))))
(to-list (trans s-sq))))
:var s-sq}))
(defn bayes-regression-mh [N x y]
"
This function implements the Gibbs sampling example using Metropolis Hastings
in OLS from Scott Lynch book 'Introduction to Applied Bayesian Statistics in the
Social Sciences (page 168)
"
(let [ lm (linear-model y x :intercept false)
b-scale (to-list (div (sqrt (:std-errors lm)) 2))
s2-scale (/ (sd (mult (:residuals lm) (div (dec (nrow x)) (- (nrow x) (ncol x))))) 2)
post-fn (fn [x y b s-sq]
(let [resid (minus y (mmult x b))]
(plus (mult -1157.5 (log s-sq))
(mult (div -0.5 s-sq) (mmult (trans resid) resid)))))
reject? (fn [x y cand-b cand-s2 old-b old-s2]
(< (- (post-fn x y cand-b cand-s2)
(post-fn x y old-b old-s2))
(log (rand))))
ncol-x (ncol x)]
(loop [coefs (transient [[0 0 0 0 0 0 0 0 0]])
variances (transient [1])
i 0]
(if (= i N)
{:coef (matrix (persistent! coefs)) :var (persistent! variances)}
(let [old-b (coefs i)
old-s2 (variances i)
cand-b (into [] (map #(+ (sample-normal 1 :mean 0 :sd %1) %2) b-scale old-b))
new-b (loop [b old-b j 0]
(if (= j ncol-x)
b
(recur
(if (reject? x y (assoc b j (cand-b j)) old-s2 old-b old-s2)
b
(assoc b j (cand-b j)))
(inc j))))
cand-s2 (+ (sample-normal 1 :mean 0 :sd s2-scale) old-s2)
new-s2 (if (or (< cand-s2 0) (reject? x y new-b cand-s2 new-b old-s2))
old-s2
cand-s2)]
(recur (conj! coefs new-b) (conj! variances new-s2) (inc i)))))))