@@ -207,13 +207,11 @@ def data_kind(
207
207
208
208
Parameters
209
209
----------
210
- data : str, pathlib.PurePath, None, bool, xarray.DataArray or {table-like}
211
- Pass in either a file name or :class:`pathlib.Path` to an ASCII data
212
- table, an :class:`xarray.DataArray`, a 1-D/2-D
213
- {table-classes} or an option argument.
210
+ data
211
+ The data to be passed to a GMT module.
214
212
required
215
- Set to True when 'data' is required, or False when dealing with
216
- optional virtual files. [Default is True] .
213
+ Whether 'data' is required. Set to `` False`` when dealing with optional virtual
214
+ files.
217
215
218
216
Returns
219
217
-------
@@ -222,30 +220,72 @@ def data_kind(
222
220
223
221
Examples
224
222
--------
223
+ >>> import io
224
+ >>> from pathlib import Path
225
225
>>> import numpy as np
226
+ >>> import pandas as pd
226
227
>>> import xarray as xr
227
- >>> import pathlib
228
- >>> import io
229
- >>> data_kind(data=None)
230
- 'vectors'
231
- >>> data_kind(data=np.arange(10).reshape((5, 2)))
232
- 'matrix'
233
- >>> data_kind(data="my-data-file.txt")
234
- 'file'
235
- >>> data_kind(data=pathlib.Path("my-data-file.txt"))
236
- 'file'
228
+
229
+ The "arg" kind:
230
+
231
+ >>> [data_kind(data=data, required=False) for data in (2, 2.0, True, False)]
232
+ ['arg', 'arg', 'arg', 'arg']
237
233
>>> data_kind(data=None, required=False)
238
234
'arg'
239
- >>> data_kind(data=2.0, required=False)
240
- 'arg'
241
- >>> data_kind(data=True, required=False)
242
- 'arg'
243
- >>> data_kind(data=xr.DataArray(np.random.rand(4, 3)))
235
+
236
+ The "file" kind:
237
+
238
+ >>> [data_kind(data=data) for data in ("file.txt", ("file1.txt", "file2.txt"))]
239
+ ['file', 'file']
240
+ >>> data_kind(data=Path("file.txt"))
241
+ 'file'
242
+ >>> data_kind(data=(Path("file1.txt"), Path("file2.txt")))
243
+ 'file'
244
+
245
+ The "grid" kind:
246
+
247
+ >>> data_kind(data=xr.DataArray(np.random.rand(4, 3))) # 2-D xarray.DataArray
248
+ 'grid'
249
+ >>> data_kind(data=xr.DataArray(np.arange(12))) # 1-D xarray.DataArray
250
+ 'grid'
251
+ >>> data_kind(data=xr.DataArray(np.random.rand(2, 3, 4, 5))) # 4-D xarray.DataArray
244
252
'grid'
245
- >>> data_kind(data=xr.DataArray(np.random.rand(3, 4, 5)))
253
+
254
+ The "image" kind:
255
+
256
+ >>> data_kind(data=xr.DataArray(np.random.rand(3, 4, 5))) # 3-D xarray.DataArray
246
257
'image'
258
+
259
+ The "stringio"`` kind:
260
+
247
261
>>> data_kind(data=io.StringIO("TEXT1\nTEXT23\n"))
248
262
'stringio'
263
+
264
+ The "matrix"`` kind:
265
+
266
+ >>> data_kind(data=np.arange(10)) # 1-D numpy.ndarray
267
+ 'matrix'
268
+ >>> data_kind(data=np.arange(10).reshape((5, 2))) # 2-D numpy.ndarray
269
+ 'matrix'
270
+ >>> data_kind(data=np.arange(60).reshape((3, 4, 5))) # 3-D numpy.ndarray
271
+ 'matrix'
272
+ >>> data_kind(xr.DataArray(np.arange(12), name="x").to_dataset()) # xarray.Dataset
273
+ 'matrix'
274
+ >>> data_kind(data=[1, 2, 3]) # 1-D sequence
275
+ 'matrix'
276
+ >>> data_kind(data=[[1, 2, 3], [4, 5, 6]]) # sequence of sequences
277
+ 'matrix'
278
+ >>> data_kind(data={"x": [1, 2, 3], "y": [4, 5, 6]}) # dictionary
279
+ 'matrix'
280
+ >>> data_kind(data=pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})) # pd.DataFrame
281
+ 'matrix'
282
+ >>> data_kind(data=pd.Series([1, 2, 3], name="x")) # pd.Series
283
+ 'matrix'
284
+
285
+ The "vectors" kind:
286
+
287
+ >>> data_kind(data=None)
288
+ 'vectors'
249
289
"""
250
290
kind : Literal [
251
291
"arg" , "file" , "geojson" , "grid" , "image" , "matrix" , "stringio" , "vectors"
0 commit comments