@@ -268,36 +268,52 @@ def array_to_datetime(array):
268
268
--------
269
269
>>> import datetime
270
270
>>> # numpy.datetime64 array
271
- >>> x = np.array(["2010-06-01", "2011-06-01T12", "2012-01-01T12:34:56"],
272
- ... dtype="datetime64")
271
+ >>> x = np.array(
272
+ ... ["2010-06-01", "2011-06-01T12", "2012-01-01T12:34:56"],
273
+ ... dtype="datetime64",
274
+ ... )
273
275
>>> array_to_datetime(x)
274
276
DatetimeIndex(['2010-06-01 00:00:00', '2011-06-01 12:00:00',
275
- '2012-01-01 12:34:56'],
276
- dtype='datetime64[ns]', freq=None)
277
+ '2012-01-01 12:34:56'],
278
+ dtype='datetime64[ns]', freq=None)
279
+
277
280
>>> # pandas.DateTimeIndex array
278
281
>>> x = pd.date_range("2013", freq="YS", periods=3)
279
- >>> array_to_datetime(x)
282
+ >>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
280
283
DatetimeIndex(['2013-01-01', '2014-01-01', '2015-01-01'],
281
- dtype='datetime64[ns]', freq='AS-JAN')
284
+ dtype='datetime64[ns]', freq='AS-JAN')
285
+
282
286
>>> # Python's built-in date and datetime
283
287
>>> x = [datetime.date(2018, 1, 1), datetime.datetime(2019, 1, 1)]
284
- >>> array_to_datetime(x)
285
- DatetimeIndex(['2018-01-01', '2019-01-01'], dtype='datetime64[ns]',
286
- freq=None)
288
+ >>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
289
+ DatetimeIndex(['2018-01-01', '2019-01-01'],
290
+ dtype='datetime64[ns]', freq=None)
291
+
287
292
>>> # Raw datetime strings in various format
288
- >>> x = ['2018', "2018-02", "2018-03-01", "2018-04-01T01:02:03",
289
- ... "5/1/2018", "Jun 05, 2018", "2018/07/02"]
293
+ >>> x = [
294
+ ... "2018",
295
+ ... "2018-02",
296
+ ... "2018-03-01",
297
+ ... "2018-04-01T01:02:03",
298
+ ... "5/1/2018",
299
+ ... "Jun 05, 2018",
300
+ ... "2018/07/02",
301
+ ... ]
290
302
>>> array_to_datetime(x)
291
303
DatetimeIndex(['2018-01-01 00:00:00', '2018-02-01 00:00:00',
292
- '2018-03-01 00:00:00', '2018-04-01 01:02:03',
293
- '2018-05-01 00:00:00', '2018-06-05 00:00:00',
294
- '2018-07-02 00:00:00'],
295
- dtype='datetime64[ns]', freq=None)
304
+ '2018-03-01 00:00:00', '2018-04-01 01:02:03',
305
+ '2018-05-01 00:00:00', '2018-06-05 00:00:00',
306
+ '2018-07-02 00:00:00'],
307
+ dtype='datetime64[ns]', freq=None)
308
+
296
309
>>> # Mixed datetime types
297
- >>> x = ['2018-01-01', np.datetime64('2018-01-01'),
298
- ... datetime.datetime(2018, 1, 1)]
299
- >>> array_to_datetime(x)
310
+ >>> x = [
311
+ ... "2018-01-01",
312
+ ... np.datetime64("2018-01-01"),
313
+ ... datetime.datetime(2018, 1, 1),
314
+ ... ]
315
+ >>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
300
316
DatetimeIndex(['2018-01-01', '2018-01-01', '2018-01-01'],
301
- dtype='datetime64[ns]', freq=None)
317
+ dtype='datetime64[ns]', freq=None)
302
318
"""
303
319
return pd .to_datetime (array )
0 commit comments