Skip to content

Commit 607b3ff

Browse files
committed
Normalize whitespace to fix doctest in array_to_datetime
1 parent aba4a67 commit 607b3ff

File tree

1 file changed

+35
-19
lines changed

1 file changed

+35
-19
lines changed

pygmt/clib/conversion.py

Lines changed: 35 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -268,36 +268,52 @@ def array_to_datetime(array):
268268
--------
269269
>>> import datetime
270270
>>> # numpy.datetime64 array
271-
>>> x = np.array(["2010-06-01", "2011-06-01T12", "2012-01-01T12:34:56"],
272-
... dtype="datetime64")
271+
>>> x = np.array(
272+
... ["2010-06-01", "2011-06-01T12", "2012-01-01T12:34:56"],
273+
... dtype="datetime64",
274+
... )
273275
>>> array_to_datetime(x)
274276
DatetimeIndex(['2010-06-01 00:00:00', '2011-06-01 12:00:00',
275-
'2012-01-01 12:34:56'],
276-
dtype='datetime64[ns]', freq=None)
277+
'2012-01-01 12:34:56'],
278+
dtype='datetime64[ns]', freq=None)
279+
277280
>>> # pandas.DateTimeIndex array
278281
>>> x = pd.date_range("2013", freq="YS", periods=3)
279-
>>> array_to_datetime(x)
282+
>>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
280283
DatetimeIndex(['2013-01-01', '2014-01-01', '2015-01-01'],
281-
dtype='datetime64[ns]', freq='AS-JAN')
284+
dtype='datetime64[ns]', freq='AS-JAN')
285+
282286
>>> # Python's built-in date and datetime
283287
>>> x = [datetime.date(2018, 1, 1), datetime.datetime(2019, 1, 1)]
284-
>>> array_to_datetime(x)
285-
DatetimeIndex(['2018-01-01', '2019-01-01'], dtype='datetime64[ns]',
286-
freq=None)
288+
>>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
289+
DatetimeIndex(['2018-01-01', '2019-01-01'],
290+
dtype='datetime64[ns]', freq=None)
291+
287292
>>> # Raw datetime strings in various format
288-
>>> x = ['2018', "2018-02", "2018-03-01", "2018-04-01T01:02:03",
289-
... "5/1/2018", "Jun 05, 2018", "2018/07/02"]
293+
>>> x = [
294+
... "2018",
295+
... "2018-02",
296+
... "2018-03-01",
297+
... "2018-04-01T01:02:03",
298+
... "5/1/2018",
299+
... "Jun 05, 2018",
300+
... "2018/07/02",
301+
... ]
290302
>>> array_to_datetime(x)
291303
DatetimeIndex(['2018-01-01 00:00:00', '2018-02-01 00:00:00',
292-
'2018-03-01 00:00:00', '2018-04-01 01:02:03',
293-
'2018-05-01 00:00:00', '2018-06-05 00:00:00',
294-
'2018-07-02 00:00:00'],
295-
dtype='datetime64[ns]', freq=None)
304+
'2018-03-01 00:00:00', '2018-04-01 01:02:03',
305+
'2018-05-01 00:00:00', '2018-06-05 00:00:00',
306+
'2018-07-02 00:00:00'],
307+
dtype='datetime64[ns]', freq=None)
308+
296309
>>> # Mixed datetime types
297-
>>> x = ['2018-01-01', np.datetime64('2018-01-01'),
298-
... datetime.datetime(2018, 1, 1)]
299-
>>> array_to_datetime(x)
310+
>>> x = [
311+
... "2018-01-01",
312+
... np.datetime64("2018-01-01"),
313+
... datetime.datetime(2018, 1, 1),
314+
... ]
315+
>>> array_to_datetime(x) # doctest: +NORMALIZE_WHITESPACE
300316
DatetimeIndex(['2018-01-01', '2018-01-01', '2018-01-01'],
301-
dtype='datetime64[ns]', freq=None)
317+
dtype='datetime64[ns]', freq=None)
302318
"""
303319
return pd.to_datetime(array)

0 commit comments

Comments
 (0)