|
| 1 | +""" |
| 2 | +grdhisteq - Perform histogram equalization for a grid. |
| 3 | +""" |
| 4 | +import warnings |
| 5 | + |
| 6 | +import numpy as np |
| 7 | +import pandas as pd |
| 8 | +from pygmt.clib import Session |
| 9 | +from pygmt.exceptions import GMTInvalidInput |
| 10 | +from pygmt.helpers import ( |
| 11 | + GMTTempFile, |
| 12 | + build_arg_string, |
| 13 | + fmt_docstring, |
| 14 | + kwargs_to_strings, |
| 15 | + use_alias, |
| 16 | +) |
| 17 | +from pygmt.io import load_dataarray |
| 18 | + |
| 19 | +__doctest_skip__ = ["grdhisteq.*"] |
| 20 | + |
| 21 | + |
| 22 | +class grdhisteq: # pylint: disable=invalid-name |
| 23 | + r""" |
| 24 | + Perform histogram equalization for a grid. |
| 25 | +
|
| 26 | + Two common use cases of :meth:`pygmt.grdhisteq` are to find data values |
| 27 | + that divide a grid into patches of equal area |
| 28 | + (:meth:`pygmt.grdhisteq.compute_bins`) or to write a grid with |
| 29 | + statistics based on some kind of cumulative distribution function |
| 30 | + (:meth:`pygmt.grdhisteq.equalize_grid`). |
| 31 | +
|
| 32 | + Histogram equalization provides a way to highlight data that has most |
| 33 | + values clustered in a small portion of the dynamic range, such as a |
| 34 | + grid of flat topography with a mountain in the middle. Ordinary gray |
| 35 | + shading of this grid (using :meth:`pygmt.Figure.grdimage` or |
| 36 | + :meth:`pygmt.Figure.grdview`) with a linear mapping from topography to |
| 37 | + graytone will result in most of the image being very dark gray, with the |
| 38 | + mountain being almost white. :meth:`pygmt.grdhisteq.compute_bins` can |
| 39 | + provide a list of data values that divide the data range into divisions |
| 40 | + which have an equal area in the image [Default is 16 if ``divisions`` is |
| 41 | + not set]. The :class:`pandas.DataFrame` or ASCII file output can be used to |
| 42 | + make a colormap with :meth:`pygmt.makecpt` and an image with |
| 43 | + :meth:`pygmt.Figure.grdimage` that has all levels of gray occuring |
| 44 | + equally. |
| 45 | +
|
| 46 | + :meth:`pygmt.grdhisteq.equalize_grid` provides a way to write a grid with |
| 47 | + statistics based on a cumulative distribution function. In this |
| 48 | + application, the ``outgrid`` has relative highs and lows in the same |
| 49 | + (x,y) locations as the ``grid``, but the values are changed to reflect |
| 50 | + their place in the cumulative distribution. |
| 51 | + """ |
| 52 | + |
| 53 | + @staticmethod |
| 54 | + @fmt_docstring |
| 55 | + @use_alias( |
| 56 | + C="divisions", |
| 57 | + D="outfile", |
| 58 | + G="outgrid", |
| 59 | + R="region", |
| 60 | + N="gaussian", |
| 61 | + Q="quadratic", |
| 62 | + V="verbose", |
| 63 | + h="header", |
| 64 | + ) |
| 65 | + @kwargs_to_strings(R="sequence") |
| 66 | + def _grdhisteq(grid, output_type, **kwargs): |
| 67 | + r""" |
| 68 | + Perform histogram equalization for a grid. |
| 69 | +
|
| 70 | + Must provide ``outfile`` or ``outgrid``. |
| 71 | +
|
| 72 | + Full option list at :gmt-docs:`grdhisteq.html` |
| 73 | +
|
| 74 | + {aliases} |
| 75 | +
|
| 76 | + Parameters |
| 77 | + ---------- |
| 78 | + grid : str or xarray.DataArray |
| 79 | + The file name of the input grid or the grid loaded as a DataArray. |
| 80 | + outgrid : str or bool or None |
| 81 | + The name of the output netCDF file with extension .nc to store the |
| 82 | + grid in. |
| 83 | + outfile : str or bool or None |
| 84 | + The name of the output ASCII file to store the results of the |
| 85 | + histogram equalization in. |
| 86 | + output_type: str |
| 87 | + Determines the output type. Use "file", "xarray", "pandas", or |
| 88 | + "numpy". |
| 89 | + divisions : int |
| 90 | + Set the number of divisions of the data range [Default is 16]. |
| 91 | +
|
| 92 | + {R} |
| 93 | + {V} |
| 94 | + {h} |
| 95 | +
|
| 96 | + Returns |
| 97 | + ------- |
| 98 | + ret: pandas.DataFrame or xarray.DataArray or None |
| 99 | + Return type depends on whether the ``outgrid`` parameter is set: |
| 100 | +
|
| 101 | + - xarray.DataArray if ``output_type`` is "xarray"" |
| 102 | + - numpy.ndarray if ``output_type`` is "numpy" |
| 103 | + - pandas.DataFrame if ``output_type`` is "pandas" |
| 104 | + - None if ``output_type`` is "file" (output is stored in |
| 105 | + ``outgrid`` or ``outfile``) |
| 106 | +
|
| 107 | + See Also |
| 108 | + ------- |
| 109 | + :meth:`pygmt.grd2cpt` |
| 110 | + """ |
| 111 | + |
| 112 | + with Session() as lib: |
| 113 | + file_context = lib.virtualfile_from_data(check_kind="raster", data=grid) |
| 114 | + with file_context as infile: |
| 115 | + arg_str = " ".join([infile, build_arg_string(kwargs)]) |
| 116 | + lib.call_module("grdhisteq", arg_str) |
| 117 | + |
| 118 | + if output_type == "file": |
| 119 | + return None |
| 120 | + if output_type == "xarray": |
| 121 | + return load_dataarray(kwargs["G"]) |
| 122 | + |
| 123 | + result = pd.read_csv( |
| 124 | + filepath_or_buffer=kwargs["D"], |
| 125 | + sep="\t", |
| 126 | + header=None, |
| 127 | + names=["start", "stop", "bin_id"], |
| 128 | + dtype={ |
| 129 | + "start": np.float32, |
| 130 | + "stop": np.float32, |
| 131 | + "bin_id": np.uint32, |
| 132 | + }, |
| 133 | + ) |
| 134 | + if output_type == "numpy": |
| 135 | + return result.to_numpy() |
| 136 | + |
| 137 | + return result.set_index("bin_id") |
| 138 | + |
| 139 | + @staticmethod |
| 140 | + @fmt_docstring |
| 141 | + def equalize_grid( |
| 142 | + grid, |
| 143 | + *, |
| 144 | + outgrid=True, |
| 145 | + divisions=None, |
| 146 | + region=None, |
| 147 | + gaussian=None, |
| 148 | + quadratic=None, |
| 149 | + verbose=None, |
| 150 | + ): |
| 151 | + r""" |
| 152 | + Perform histogram equalization for a grid. |
| 153 | +
|
| 154 | + :meth:`pygmt.grdhisteq.equalize_grid` provides a way to write a grid |
| 155 | + with statistics based on a cumulative distribution function. The |
| 156 | + ``outgrid`` has relative highs and lows in the same (x,y) locations as |
| 157 | + the ``grid``, but the values are changed to reflect their place in the |
| 158 | + cumulative distribution. |
| 159 | +
|
| 160 | + Full option list at :gmt-docs:`grdhisteq.html` |
| 161 | +
|
| 162 | + Parameters |
| 163 | + ---------- |
| 164 | + grid : str or xarray.DataArray |
| 165 | + The file name of the input grid or the grid loaded as a DataArray. |
| 166 | + outgrid : str or bool or None |
| 167 | + The name of the output netCDF file with extension .nc to store the |
| 168 | + grid in. |
| 169 | + divisions : int |
| 170 | + Set the number of divisions of the data range. |
| 171 | + gaussian : bool or int or float |
| 172 | + *norm*. |
| 173 | + Produce an output grid with standard normal scores using |
| 174 | + ``gaussian=True`` or force the scores to fall in the ±\ *norm* |
| 175 | + range. |
| 176 | + quadratic: bool |
| 177 | + Perform quadratic equalization [Default is linear]. |
| 178 | + {R} |
| 179 | + {V} |
| 180 | +
|
| 181 | + Returns |
| 182 | + ------- |
| 183 | + ret: xarray.DataArray or None |
| 184 | + Return type depends on the ``outgrid`` parameter: |
| 185 | +
|
| 186 | + - xarray.DataArray if ``outgrid`` is True or None |
| 187 | + - None if ``outgrid`` is a str (grid output is stored in |
| 188 | + ``outgrid``) |
| 189 | +
|
| 190 | + Example |
| 191 | + ------- |
| 192 | + >>> import pygmt |
| 193 | + >>> # Load a grid of @earth_relief_30m data, with an x-range of 10 to |
| 194 | + >>> # 30, and a y-range of 15 to 25 |
| 195 | + >>> grid = pygmt.datasets.load_earth_relief( |
| 196 | + ... resolution="30m", region=[10, 30, 15, 25] |
| 197 | + ... ) |
| 198 | + >>> # Create a new grid with a Gaussian data distribution |
| 199 | + >>> grid = pygmt.grdhisteq.equalize_grid(grid=grid, gaussian=True) |
| 200 | +
|
| 201 | + See Also |
| 202 | + ------- |
| 203 | + :meth:`pygmt.grd2cpt` |
| 204 | +
|
| 205 | + Notes |
| 206 | + ----- |
| 207 | + This method does a weighted histogram equalization for geographic |
| 208 | + grids to account for node area varying with latitude. |
| 209 | + """ |
| 210 | + # Return an xarray.DataArray if ``outgrid`` is not set |
| 211 | + with GMTTempFile(suffix=".nc") as tmpfile: |
| 212 | + if isinstance(outgrid, str): |
| 213 | + output_type = "file" |
| 214 | + else: |
| 215 | + output_type = "xarray" |
| 216 | + outgrid = tmpfile.name |
| 217 | + return grdhisteq._grdhisteq( |
| 218 | + grid=grid, |
| 219 | + output_type=output_type, |
| 220 | + outgrid=outgrid, |
| 221 | + divisions=divisions, |
| 222 | + region=region, |
| 223 | + gaussian=gaussian, |
| 224 | + quadratic=quadratic, |
| 225 | + verbose=verbose, |
| 226 | + ) |
| 227 | + |
| 228 | + @staticmethod |
| 229 | + @fmt_docstring |
| 230 | + def compute_bins( |
| 231 | + grid, |
| 232 | + *, |
| 233 | + output_type="pandas", |
| 234 | + outfile=None, |
| 235 | + divisions=None, |
| 236 | + quadratic=None, |
| 237 | + verbose=None, |
| 238 | + region=None, |
| 239 | + header=None, |
| 240 | + ): |
| 241 | + r""" |
| 242 | + Perform histogram equalization for a grid. |
| 243 | +
|
| 244 | + Histogram equalization provides a way to highlight data that has most |
| 245 | + values clustered in a small portion of the dynamic range, such as a |
| 246 | + grid of flat topography with a mountain in the middle. Ordinary gray |
| 247 | + shading of this grid (using :meth:`pygmt.Figure.grdimage` or |
| 248 | + :meth:`pygmt.Figure.grdview`) with a linear mapping from topography to |
| 249 | + graytone will result in most of the image being very dark gray, with |
| 250 | + the mountain being almost white. :meth:`pygmt.grdhisteq.compute_bins` |
| 251 | + can provide a list of data values that divide the data range into |
| 252 | + divisions which have an equal area in the image [Default is 16 if |
| 253 | + ``divisions`` is not set]. The :class:`pandas.DataFrame` or ASCII file |
| 254 | + output can be used to make a colormap with :meth:`pygmt.makecpt` and an |
| 255 | + image with :meth:`pygmt.Figure.grdimage` that has all levels of gray |
| 256 | + occuring equally. |
| 257 | +
|
| 258 | + Full option list at :gmt-docs:`grdhisteq.html` |
| 259 | +
|
| 260 | + Parameters |
| 261 | + ---------- |
| 262 | + grid : str or xarray.DataArray |
| 263 | + The file name of the input grid or the grid loaded as a DataArray. |
| 264 | + outfile : str or bool or None |
| 265 | + The name of the output ASCII file to store the results of the |
| 266 | + histogram equalization in. |
| 267 | + output_type : str |
| 268 | + Determine the format the xyz data will be returned in [Default is |
| 269 | + ``pandas``]: |
| 270 | +
|
| 271 | + - ``numpy`` - :class:`numpy.ndarray` |
| 272 | + - ``pandas``- :class:`pandas.DataFrame` |
| 273 | + - ``file`` - ASCII file (requires ``outfile``) |
| 274 | + divisions : int |
| 275 | + Set the number of divisions of the data range. |
| 276 | + quadratic : bool |
| 277 | + Perform quadratic equalization [Default is linear]. |
| 278 | + {R} |
| 279 | + {V} |
| 280 | + {h} |
| 281 | +
|
| 282 | + Returns |
| 283 | + ------- |
| 284 | + ret: pandas.DataFrame or None |
| 285 | + Return type depends on the ``outfile`` parameter: |
| 286 | +
|
| 287 | + - pandas.DataFrame if ``outfile`` is True or None |
| 288 | + - None if ``outfile`` is a str (file output is stored in |
| 289 | + ``outfile``) |
| 290 | +
|
| 291 | + Example |
| 292 | + ------- |
| 293 | + >>> import pygmt |
| 294 | + >>> # Load a grid of @earth_relief_30m data, with an x-range of 10 to |
| 295 | + >>> # 30, and a y-range of 15 to 25 |
| 296 | + >>> grid = pygmt.datasets.load_earth_relief( |
| 297 | + ... resolution="30m", region=[10, 30, 15, 25] |
| 298 | + ... ) |
| 299 | + >>> # Find elevation intervals that splits the data range into 5 |
| 300 | + >>> # divisions, each of which have an equal area in the original grid. |
| 301 | + >>> bins = pygmt.grdhisteq.compute_bins(grid=grid, divisions=5) |
| 302 | + >>> print(bins) |
| 303 | + start stop |
| 304 | + bin_id |
| 305 | + 0 179.0 397.5 |
| 306 | + 1 397.5 475.5 |
| 307 | + 2 475.5 573.5 |
| 308 | + 3 573.5 710.5 |
| 309 | + 4 710.5 2103.0 |
| 310 | +
|
| 311 | + See Also |
| 312 | + ------- |
| 313 | + :meth:`pygmt.grd2cpt` |
| 314 | +
|
| 315 | + Notes |
| 316 | + ----- |
| 317 | + This method does a weighted histogram equalization for geographic |
| 318 | + grids to account for node area varying with latitude. |
| 319 | + """ |
| 320 | + # Return a pandas.DataFrame if ``outfile`` is not set |
| 321 | + if output_type not in ["numpy", "pandas", "file"]: |
| 322 | + raise GMTInvalidInput( |
| 323 | + "Must specify 'output_type' either as 'numpy', 'pandas' or 'file'." |
| 324 | + ) |
| 325 | + |
| 326 | + if header is not None and output_type != "file": |
| 327 | + raise GMTInvalidInput("'header' is only allowed with output_type='file'.") |
| 328 | + |
| 329 | + if isinstance(outfile, str) and output_type != "file": |
| 330 | + msg = ( |
| 331 | + f"Changing 'output_type' from '{output_type}' to 'file' " |
| 332 | + "since 'outfile' parameter is set. Please use output_type='file' " |
| 333 | + "to silence this warning." |
| 334 | + ) |
| 335 | + warnings.warn(message=msg, category=RuntimeWarning, stacklevel=2) |
| 336 | + output_type = "file" |
| 337 | + with GMTTempFile(suffix=".txt") as tmpfile: |
| 338 | + if output_type != "file": |
| 339 | + outfile = tmpfile.name |
| 340 | + return grdhisteq._grdhisteq( |
| 341 | + grid, |
| 342 | + output_type=output_type, |
| 343 | + outfile=outfile, |
| 344 | + divisions=divisions, |
| 345 | + quadratic=quadratic, |
| 346 | + verbose=verbose, |
| 347 | + region=region, |
| 348 | + header=header, |
| 349 | + ) |
0 commit comments