+"""This is the core module of the AstroData package. It provides the
+`AstroData` class, which is the main interface to manipulate astronomical
+data sets.
+"""
+import inspect
+import logging
+import os
+import re
+import textwrap
+import warnings
+from collections import OrderedDict
+from contextlib import suppress
+from copy import deepcopy
+from functools import partial
+
+import numpy as np
+
+from astropy.io import fits
+from astropy.nddata import NDData
+from astropy.table import Table
+from astropy.utils import format_doc
+
+from .fits import (
+ DEFAULT_EXTENSION,
+ FitsHeaderCollection,
+ _process_table,
+ read_fits,
+ write_fits,
+)
+from .nddata import ADVarianceUncertainty
+from .nddata import NDAstroData as NDDataObject
+from .utils import (
+ assign_only_single_slice,
+ astro_data_descriptor,
+ deprecated,
+ normalize_indices,
+ returns_list,
+)
+
+NO_DEFAULT = object()
+
+
+_ARIT_DOC = """
+ Performs {name} by evaluating ``self {op} operand``.
+
+ Parameters
+ ----------
+ oper : number or object
+ The operand to perform the operation ``self {op} operand``.
+
+ Returns
+ --------
+ `AstroData` instance
+"""
+
+
+
+
[docs]
+
class AstroData:
+
"""Base class for the AstroData software package. It provides an interface
+
to manipulate astronomical data sets.
+
+
Parameters
+
----------
+
nddata : `astrodata.NDAstroData` or list of `astrodata.NDAstroData`
+
List of NDAstroData objects.
+
+
tables : dict[name, `astropy.table.Table`]
+
Dict of table objects.
+
+
phu : `astropy.io.fits.Header`
+
Primary header.
+
+
indices : list of int
+
List of indices mapping the `astrodata.NDAstroData` objects that this
+
object will access to. This is used when slicing an object, then the
+
sliced AstroData will have the ``.nddata`` list from its parent and
+
access the sliced NDAstroData through this list of indices.
+
"""
+
+
# Derived classes may provide their own __keyword_dict. Being a private
+
# variable, each class will preserve its own, and there's no risk of
+
# overriding the whole thing
+
__keyword_dict = {
+
"instrument": "INSTRUME",
+
"object": "OBJECT",
+
"telescope": "TELESCOP",
+
"ut_date": "DATE-OBS",
+
}
+
+
def __init__(
+
self, nddata=None, tables=None, phu=None, indices=None, is_single=False
+
):
+
if nddata is None:
+
nddata = []
+
+
# Check that nddata is either a single or iterable of NDAstroData
+
# objects
+
is_nddata = isinstance(nddata, NDDataObject)
+
+
try:
+
is_nddata_iterable = isinstance(nddata[0], NDDataObject)
+
+
except IndexError:
+
# Fall back on checking if it's a list or tuple---could be empty.
+
is_nddata_iterable = isinstance(nddata, (list, tuple))
+
+
if not (is_nddata or is_nddata_iterable):
+
raise TypeError(
+
f"nddata must be an NDAstroData object or a list of "
+
f"NDAstroData objects, not {type(nddata)} ({nddata})."
+
)
+
+
# If nddata is a single NDAstroData object, make it a list.
+
if not isinstance(nddata, (list, tuple)):
+
nddata = [nddata]
+
+
# _all_nddatas contains all the extensions from the original file or
+
# object. And _indices is used to map extensions for sliced objects.
+
self._all_nddatas = nddata
+
self._indices = indices
+
+
# TODO: Is there no way to know if this is a single frame without
+
# passing an arg?
+
self.is_single = is_single
+
+
# If this data provider represents a single slice out of a whole
+
# dataset, return True. Otherwise, return False.
+
if tables is not None and not isinstance(tables, dict):
+
raise ValueError("tables must be a dict")
+
+
self._tables = tables or {}
+
+
self._phu = phu or fits.Header()
+
self._fixed_settable = {
+
"data",
+
"uncertainty",
+
"mask",
+
"variance",
+
"wcs",
+
"path",
+
"filename",
+
}
+
self._logger = logging.getLogger(__name__)
+
self._orig_filename = None
+
self._path = None
+
+
def __deepcopy__(self, memo):
+
"""Returns a new instance of this class.
+
+
Parameters
+
----------
+
memo : dict
+
See the documentation on `deepcopy` for an explanation on how
+
this works.
+
+
"""
+
obj = self.__class__()
+
+
for attr in ("_phu", "_path", "_orig_filename", "_tables"):
+
obj.__dict__[attr] = deepcopy(self.__dict__[attr])
+
+
obj.__dict__["_all_nddatas"] = [deepcopy(nd) for nd in self._nddata]
+
return obj
+
+
def _keyword_for(self, name):
+
"""Returns the FITS keyword name associated to ``name``.
+
+
Parameters
+
----------
+
name : str
+
The common "key" name for which we want to know the associated
+
FITS keyword.
+
+
Returns
+
-------
+
str
+
The desired keyword name.
+
+
Raises
+
------
+
AttributeError
+
If there is no keyword for the specified ``name``.
+
+
"""
+
for cls in self.__class__.mro():
+
with suppress(AttributeError, KeyError):
+
# __keyword_dict is a mangled variable
+
return getattr(self, f"_{cls.__name__}__keyword_dict")[name]
+
+
raise AttributeError(f"No match for '{name}'")
+
+
def _process_tags(self):
+
"""Return the tag set (as a set of str) for the current instance."""
+
results = []
+
# Calling inspect.getmembers on `self` would trigger all the
+
# properties (tags, phu, hdr, etc.), and that's undesirable. To
+
# prevent that, we'll inspect the *class*.
+
members = inspect.getmembers(
+
self.__class__, lambda x: hasattr(x, "tag_method")
+
)
+
+
for _, method in members:
+
ts = method(self)
+
if ts.add or ts.remove or ts.blocks:
+
results.append(ts)
+
+
# Sort by the length of substractions... those that substract
+
# from others go first
+
results = sorted(
+
results, key=lambda x: len(x.remove) + len(x.blocks), reverse=True
+
)
+
+
# Sort by length of blocked_by, those that are never disabled go first
+
results = sorted(results, key=lambda x: len(x.blocked_by))
+
+
# Sort by length of if_present... those that need other tags to
+
# be present go last
+
results = sorted(results, key=lambda x: len(x.if_present))
+
+
tags = set()
+
removals = set()
+
blocked = set()
+
for plus, minus, blocked_by, blocks, is_present in results:
+
if is_present:
+
# If this TagSet requires other tags to be present, make
+
# sure that all of them are. Otherwise, skip...
+
if len(tags & is_present) != len(is_present):
+
continue
+
+
allowed = (len(tags & blocked_by) + len(plus & blocked)) == 0
+
if allowed:
+
# This set is not being blocked by others...
+
removals.update(minus)
+
tags.update(plus - removals)
+
blocked.update(blocks)
+
+
return tags
+
+
@staticmethod
+
def _matches_data(source):
+
# This one is trivial. Will be more specific for subclasses.
+
logging.debug("Using default _matches_data with %s", source)
+
return True
+
+
@property
+
def path(self):
+
"""Return the file path."""
+
return self._path
+
+
@path.setter
+
def path(self, value):
+
if self._path is None and value is not None:
+
self._orig_filename = os.path.basename(value)
+
self._path = value
+
+
@property
+
def filename(self):
+
"""Return the file name."""
+
if self.path is not None:
+
return os.path.basename(self.path)
+
+
return self.path
+
+
@filename.setter
+
def filename(self, value):
+
if os.path.isabs(value):
+
raise ValueError("Cannot set the filename to an absolute path!")
+
+
if self.path is None:
+
self.path = os.path.abspath(value)
+
+
else:
+
dirname = os.path.dirname(self.path)
+
self.path = os.path.join(dirname, value)
+
+
@property
+
def orig_filename(self):
+
"""Return the original file name (before it was modified)."""
+
return self._orig_filename
+
+
@orig_filename.setter
+
def orig_filename(self, value):
+
self._orig_filename = value
+
+
@property
+
def phu(self):
+
"""Return the primary header."""
+
return self._phu
+
+
@phu.setter
+
def phu(self, phu):
+
self._phu = phu
+
+
@property
+
def hdr(self):
+
"""Return all headers, as a `astrodata.fits.FitsHeaderCollection`."""
+
if not self.nddata:
+
return None
+
headers = [nd.meta["header"] for nd in self._nddata]
+
return headers[0] if self.is_single else FitsHeaderCollection(headers)
+
+
@property
+
@deprecated(
+
"Access to headers through this property is deprecated and "
+
"will be removed in the future. Use '.hdr' instead."
+
)
+
def header(self):
+
"""Deprecated header access. Use ``.hdr`` instead."""
+
return [self.phu] + [ndd.meta["header"] for ndd in self._nddata]
+
+
@property
+
def tags(self):
+
"""A set of strings that represent the tags defining this instance."""
+
return self._process_tags()
+
+
@property
+
def descriptors(self):
+
"""Returns a sequence of names for the methods that have been
+
decorated as descriptors.
+
+
Returns
+
--------
+
tuple of str
+
"""
+
members = inspect.getmembers(
+
self.__class__, lambda x: hasattr(x, "descriptor_method")
+
)
+
return tuple(mname for (mname, method) in members)
+
+
@property
+
def id(self):
+
"""Returns the extension identifier (1-based extension number)
+
for sliced objects.
+
"""
+
if self.is_single:
+
return self._indices[0] + 1
+
+
raise ValueError(
+
"Cannot return id for an AstroData object "
+
"that is not a single slice"
+
)
+
+
@property
+
def indices(self):
+
"""Returns the extensions indices for sliced objects."""
+
return self._indices if self._indices else list(range(len(self)))
+
+
@property
+
def is_sliced(self):
+
"""If this data provider instance represents the whole dataset, return
+
False. If it represents a slice out of the whole, return True.
+
"""
+
return self._indices is not None
+
+
+
[docs]
+
def is_settable(self, attr):
+
"""Return True if the attribute is meant to be modified."""
+
if self.is_sliced and attr in {"path", "filename"}:
+
return False
+
return attr in self._fixed_settable or attr.isupper()
+
+
+
@property
+
def _nddata(self):
+
"""Return the list of `astrodata.NDAstroData` objects. Contrary to
+
``self.nddata`` this always returns a list.
+
"""
+
if self._indices is not None:
+
return [self._all_nddatas[i] for i in self._indices]
+
+
return self._all_nddatas
+
+
@property
+
def nddata(self):
+
"""Return the list of `astrodata.NDAstroData` objects.
+
+
If the `AstroData` object is sliced, this returns only the NDData
+
objects of the sliced extensions. And if this is a single extension
+
object, the NDData object is returned directly (i.e. not a list).
+
"""
+
return self._nddata[0] if self.is_single else self._nddata
+
+
+
[docs]
+
def table(self):
+
"""Return a dictionary of `astropy.table.Table` objects.
+
+
Notes
+
-----
+
This returns a _copy_ of the tables, so modifying them will not
+
affect the original ones.
+
"""
+
# FIXME: do we need this in addition to .tables ?
+
return self._tables.copy()
+
+
+
@property
+
def tables(self):
+
"""Return the names of the `astropy.table.Table` objects associated to
+
the top-level object.
+
"""
+
return set(self._tables)
+
+
@property
+
def ext_tables(self):
+
"""Return the names of the `astropy.table.Table` objects associated to
+
an extension.
+
"""
+
if not self.is_single:
+
raise AttributeError("this is only available for extensions")
+
+
return set(
+
key
+
for key, obj in self.nddata.meta["other"].items()
+
if isinstance(obj, Table)
+
)
+
+
@property
+
@returns_list
+
def shape(self):
+
"""Return the shape of the data array for each extension as a list of
+
shapes.
+
"""
+
return [nd.shape for nd in self._nddata]
+
+
@property
+
@returns_list
+
def data(self):
+
"""A list of the arrays (or single array, if this is a single slice)
+
corresponding to the science data attached to each extension.
+
"""
+
return [nd.data for nd in self._nddata]
+
+
@data.setter
+
@assign_only_single_slice
+
def data(self, value):
+
# Setting the ._data in the NDData is a bit kludgy, but we're all
+
# grown adults and know what we're doing, isn't it?
+
if hasattr(value, "shape"):
+
self.nddata._data = value
+
+
else:
+
raise AttributeError(
+
"Trying to assign data to be something with no shape"
+
)
+
+
@property
+
@returns_list
+
def uncertainty(self):
+
"""A list of the uncertainty objects (or a single object, if this is
+
a single slice) attached to the science data, for each extension.
+
+
The objects are instances of AstroPy's `astropy.nddata.NDUncertainty`,
+
or `None` where no information is available.
+
+
See also
+
--------
+
variance : The actual array supporting the uncertainty object.
+
+
"""
+
return [nd.uncertainty for nd in self._nddata]
+
+
@uncertainty.setter
+
@assign_only_single_slice
+
def uncertainty(self, value):
+
self.nddata.uncertainty = value
+
+
@property
+
@returns_list
+
def mask(self):
+
"""A list of the mask arrays (or a single array, if this is a single
+
slice) attached to the science data, for each extension.
+
+
For objects that miss a mask, `None` will be provided instead.
+
"""
+
return [nd.mask for nd in self._nddata]
+
+
@mask.setter
+
@assign_only_single_slice
+
def mask(self, value):
+
self.nddata.mask = value
+
+
@property
+
@returns_list
+
def variance(self):
+
"""A list of the variance arrays (or a single array, if this is a
+
single slice) attached to the science data, for each extension.
+
+
For objects that miss uncertainty information, `None` will be provided
+
instead.
+
+
See also
+
---------
+
uncertainty : The uncertainty objects used under the hood.
+
+
"""
+
return [nd.variance for nd in self._nddata]
+
+
@variance.setter
+
@assign_only_single_slice
+
def variance(self, value):
+
if value is None:
+
self.nddata.uncertainty = None
+
else:
+
self.nddata.uncertainty = ADVarianceUncertainty(value)
+
+
@property
+
def wcs(self):
+
"""Returns the list of WCS objects for each extension."""
+
if self.is_single:
+
return self.nddata.wcs
+
+
raise ValueError(
+
"Cannot return WCS for an AstroData object "
+
"that is not a single slice"
+
)
+
+
@wcs.setter
+
@assign_only_single_slice
+
def wcs(self, value):
+
self.nddata.wcs = value
+
+
def __iter__(self):
+
if self.is_single:
+
yield self
+
else:
+
for n in range(len(self)):
+
yield self[n]
+
+
def __getitem__(self, idx):
+
"""Returns a sliced view of the instance. It supports the standard
+
Python indexing syntax.
+
+
Parameters
+
----------
+
slice : int, `slice`
+
An integer or an instance of a Python standard `slice` object
+
+
Raises
+
-------
+
TypeError
+
If trying to slice an object when it doesn't make sense (e.g.
+
slicing a single slice)
+
+
ValueError
+
If `slice` does not belong to one of the recognized types
+
+
IndexError
+
If an index is out of range
+
"""
+
if self.is_single:
+
raise TypeError("Can't slice a single slice!")
+
+
indices, _ = normalize_indices(idx, nitems=len(self))
+
+
if self._indices:
+
indices = [self._indices[i] for i in indices]
+
+
is_single = not isinstance(idx, (tuple, slice))
+
+
obj = self.__class__(
+
self._all_nddatas,
+
tables=self._tables,
+
phu=self.phu,
+
indices=indices,
+
is_single=is_single,
+
)
+
+
obj._path = self.path
+
obj._orig_filename = self.orig_filename
+
+
return obj
+
+
def __delitem__(self, idx):
+
"""Called to implement deletion of ``self[idx]``. Supports standard
+
Python syntax (including negative indices).
+
+
Parameters
+
----------
+
idx : int
+
This index represents the order of the element that you want
+
to remove.
+
+
Raises
+
-------
+
IndexError
+
If `idx` is out of range.
+
"""
+
if self.is_sliced:
+
raise TypeError("Can't remove items from a sliced object")
+
del self._all_nddatas[idx]
+
+
def __getattr__(self, attribute):
+
"""Called when an attribute lookup has not found the attribute in the
+
usual places (not an instance attribute, and not in the class tree for
+
``self``).
+
+
Parameters
+
----------
+
attribute : str
+
The attribute's name.
+
+
Raises
+
-------
+
AttributeError
+
If the attribute could not be found/computed.
+
"""
+
# I we're working with single slices, let's look some things up
+
# in the ND object
+
if self.is_single and attribute.isupper():
+
with suppress(KeyError):
+
return self.nddata.meta["other"][attribute]
+
+
if attribute in self._tables:
+
return self._tables[attribute]
+
+
raise AttributeError(
+
f"{self.__class__.__name__!r} object has no "
+
f"attribute {attribute!r}"
+
)
+
+
def __setattr__(self, attribute, value):
+
"""Called when an attribute assignment is attempted, instead of the
+
normal mechanism.
+
+
Parameters
+
----------
+
attribute : str
+
The attribute's name.
+
+
value : object
+
The value to be assigned to the attribute.
+
"""
+
+
def _my_attribute(attr):
+
return attr in self.__dict__ or attr in self.__class__.__dict__
+
+
if (
+
attribute.isupper()
+
and self.is_settable(attribute)
+
and not _my_attribute(attribute)
+
):
+
# This method is meant to let the user set certain attributes of
+
# the NDData objects. First we check if the attribute belongs to
+
# this object's dictionary. Otherwise, see if we can pass it down.
+
#
+
if self.is_sliced and not self.is_single:
+
raise TypeError(
+
"This attribute can only be "
+
"assigned to a single-slice object"
+
)
+
+
if attribute == DEFAULT_EXTENSION:
+
raise AttributeError(
+
f"{attribute} extensions should be "
+
"appended with .append"
+
)
+
+
if attribute in {"DQ", "VAR"}:
+
raise AttributeError(
+
f"{attribute} should be set on the " "nddata object"
+
)
+
+
add_to = self.nddata if self.is_single else None
+
self._append(value, name=attribute, add_to=add_to)
+
+
return
+
+
super().__setattr__(attribute, value)
+
+
def __delattr__(self, attribute):
+
"""Implements attribute removal."""
+
if not attribute.isupper():
+
super().__delattr__(attribute)
+
return
+
+
if self.is_sliced:
+
if not self.is_single:
+
raise TypeError("Can't delete attributes on non-single slices")
+
+
other = self.nddata.meta["other"]
+
if attribute in other:
+
del other[attribute]
+
else:
+
raise AttributeError(
+
f"{self.__class__.__name__!r} sliced "
+
"object has no attribute {attribute!r}"
+
)
+
else:
+
if attribute in self._tables:
+
del self._tables[attribute]
+
else:
+
raise AttributeError(
+
f"'{attribute}' is not a global table " "for this instance"
+
)
+
+
def __contains__(self, attribute):
+
"""Implements the ability to use the ``in`` operator with an
+
`AstroData` object.
+
+
Parameters
+
----------
+
attribute : str
+
An attribute name.
+
+
Returns
+
--------
+
bool
+
"""
+
return attribute in self.exposed
+
+
def __len__(self):
+
"""Return the number of independent extensions stored by the object."""
+
if self._indices is not None:
+
return len(self._indices)
+
+
return len(self._all_nddatas)
+
+
@property
+
def exposed(self):
+
"""A collection of strings with the names of objects that can be
+
accessed directly by name as attributes of this instance, and that are
+
not part of its standard interface (i.e. data objects that have been
+
added dynamically).
+
+
Examples
+
---------
+
>>> ad[0].exposed # doctest: +SKIP
+
set(['OBJMASK', 'OBJCAT'])
+
+
"""
+
exposed = set(self._tables)
+
if self.is_single:
+
exposed |= set(self.nddata.meta["other"])
+
+
return exposed
+
+
def _pixel_info(self):
+
for idx, nd in enumerate(self._nddata):
+
other_objects = []
+
uncer = nd.uncertainty
+
fixed = (
+
("variance", None if uncer is None else uncer),
+
("mask", nd.mask),
+
)
+
+
for name, other in fixed + tuple(sorted(nd.meta["other"].items())):
+
if other is None:
+
continue
+
+
if isinstance(other, Table):
+
other_objects.append(
+
{
+
"attr": name,
+
"type": "Table",
+
"dim": str((len(other), len(other.columns))),
+
"data_type": "n/a",
+
}
+
)
+
+
else:
+
dim = ""
+
if hasattr(other, "dtype"):
+
dt = other.dtype.name
+
dim = str(other.shape)
+
+
elif hasattr(other, "data"):
+
dt = other.data.dtype.name
+
dim = str(other.data.shape)
+
+
elif hasattr(other, "array"):
+
dt = other.array.dtype.name
+
dim = str(other.array.shape)
+
+
else:
+
dt = "unknown"
+
+
obj_dict = {
+
"attr": name,
+
"type": type(other).__name__,
+
"dim": dim,
+
"data_type": dt,
+
}
+
+
other_objects.append(obj_dict)
+
+
main_dict = {
+
"content": "science",
+
"type": type(nd).__name__,
+
"dim": str(nd.data.shape),
+
"data_type": nd.data.dtype.name,
+
}
+
+
out_dict = {
+
"idx": f"[{idx:2}]",
+
"main": main_dict,
+
"other": other_objects,
+
}
+
+
yield out_dict
+
+
+
[docs]
+
def info(self):
+
"""Prints out information about the contents of this instance."""
+
+
print(f"Filename: {self.path if self.path else 'Unknown'}")
+
# This is fixed. We don't support opening for update
+
# print("Mode: readonly")
+
+
text = "Tags: " + " ".join(sorted(self.tags))
+
textwrapper = textwrap.TextWrapper(width=80, subsequent_indent=" ")
+
for line in textwrapper.wrap(text):
+
print(line)
+
+
if len(self) > 0:
+
main_fmt = "{:6} {:24} {:17} {:14} {}"
+
other_fmt = " .{:20} {:17} {:14} {}"
+
print("\nPixels Extensions")
+
print(
+
main_fmt.format(
+
"Index", "Content", "Type", "Dimensions", "Format"
+
)
+
)
+
for pi in self._pixel_info():
+
main_obj = pi["main"]
+
print(
+
main_fmt.format(
+
pi["idx"],
+
main_obj["content"][:24],
+
main_obj["type"][:17],
+
main_obj["dim"],
+
main_obj["data_type"],
+
)
+
)
+
for other in pi["other"]:
+
print(
+
other_fmt.format(
+
other["attr"][:20],
+
other["type"][:17],
+
other["dim"],
+
other["data_type"],
+
)
+
)
+
+
# NOTE: This covers tables, only. Study other cases before
+
# implementing a more general solution
+
if self._tables:
+
print("\nOther Extensions")
+
print(" Type Dimensions")
+
for name, table in sorted(self._tables.items()):
+
if isinstance(table, list):
+
# This is not a free floating table
+
continue
+
+
print(
+
f".{name[:13]:13s} {'Table':11s} {len(table), len(table.columns)}"
+
)
+
+
+
def _oper(self, operator, operand):
+
ind = self.indices
+
ndd = self._all_nddatas
+
if isinstance(operand, AstroData):
+
if len(operand) != len(self):
+
raise ValueError("Operands are not the same size")
+
for n in range(len(self)):
+
try:
+
data = (
+
operand.nddata
+
if operand.is_single
+
else operand.nddata[n]
+
)
+
ndd[ind[n]] = operator(ndd[ind[n]], data)
+
except TypeError:
+
# This may happen if operand is a sliced, single
+
# AstroData object
+
ndd[ind[n]] = operator(ndd[ind[n]], operand.nddata)
+
op_table = operand.table()
+
ltab, rtab = set(self._tables), set(op_table)
+
for tab in rtab - ltab:
+
self._tables[tab] = op_table[tab]
+
+
else:
+
for n in range(len(self)):
+
ndd[ind[n]] = operator(ndd[ind[n]], operand)
+
+
def _standard_nddata_op(self, fn, operand):
+
return self._oper(
+
partial(fn, handle_mask=np.bitwise_or, handle_meta="first_found"),
+
operand,
+
)
+
+
@format_doc(_ARIT_DOC, name="addition", op="+")
+
def __add__(self, oper):
+
copy = deepcopy(self)
+
copy += oper
+
return copy
+
+
@format_doc(_ARIT_DOC, name="subtraction", op="-")
+
def __sub__(self, oper):
+
copy = deepcopy(self)
+
copy -= oper
+
return copy
+
+
@format_doc(_ARIT_DOC, name="multiplication", op="*")
+
def __mul__(self, oper):
+
copy = deepcopy(self)
+
copy *= oper
+
return copy
+
+
@format_doc(_ARIT_DOC, name="division", op="/")
+
def __truediv__(self, oper):
+
copy = deepcopy(self)
+
copy /= oper
+
return copy
+
+
@format_doc(_ARIT_DOC, name="inplace addition", op="+=")
+
def __iadd__(self, oper):
+
self._standard_nddata_op(NDDataObject.add, oper)
+
return self
+
+
@format_doc(_ARIT_DOC, name="inplace subtraction", op="-=")
+
def __isub__(self, oper):
+
self._standard_nddata_op(NDDataObject.subtract, oper)
+
return self
+
+
@format_doc(_ARIT_DOC, name="inplace multiplication", op="*=")
+
def __imul__(self, oper):
+
self._standard_nddata_op(NDDataObject.multiply, oper)
+
return self
+
+
@format_doc(_ARIT_DOC, name="inplace division", op="/=")
+
def __itruediv__(self, oper):
+
self._standard_nddata_op(NDDataObject.divide, oper)
+
return self
+
+
add = __iadd__
+
subtract = __isub__
+
multiply = __imul__
+
divide = __itruediv__
+
+
__radd__ = __add__
+
__rmul__ = __mul__
+
+
def __rsub__(self, oper):
+
copy = (deepcopy(self) - oper) * -1
+
return copy
+
+
def _rdiv(self, ndd, operand):
+
# Divide method works with the operand first
+
return NDDataObject.divide(operand, ndd)
+
+
def __rtruediv__(self, oper):
+
obj = deepcopy(self)
+
obj._oper(obj._rdiv, oper)
+
return obj
+
+
def _process_pixel_plane(
+
self, pixim, name=None, top_level=False, custom_header=None
+
):
+
# Assume that we get an ImageHDU or something that can be
+
# turned into one
+
if isinstance(pixim, fits.ImageHDU):
+
nd = NDDataObject(pixim.data, meta={"header": pixim.header})
+
elif isinstance(pixim, NDDataObject):
+
nd = pixim
+
else:
+
nd = NDDataObject(pixim)
+
+
if custom_header is not None:
+
nd.meta["header"] = custom_header
+
+
header = nd.meta.setdefault("header", fits.Header())
+
currname = header.get("EXTNAME")
+
+
if currname is None:
+
header["EXTNAME"] = name if name is not None else DEFAULT_EXTENSION
+
+
if top_level:
+
nd.meta.setdefault("other", OrderedDict())
+
+
return nd
+
+
def _append_array(self, data, name=None, header=None, add_to=None):
+
if name in {"DQ", "VAR"}:
+
raise ValueError(
+
f"'{name}' need to be associated to a "
+
f"'{DEFAULT_EXTENSION}' one"
+
)
+
+
if add_to is None:
+
# Top level extension
+
if name is not None:
+
hname = name
+
elif header is not None:
+
hname = header.get("EXTNAME", DEFAULT_EXTENSION)
+
else:
+
hname = DEFAULT_EXTENSION
+
+
hdu = fits.ImageHDU(data, header=header)
+
hdu.header["EXTNAME"] = hname
+
ret = self._append_imagehdu(
+
hdu, name=hname, header=None, add_to=None
+
)
+
else:
+
ret = add_to.meta["other"][name] = data
+
+
return ret
+
+
def _append_imagehdu(self, hdu, name, header, add_to):
+
if name in {"DQ", "VAR"} or add_to is not None:
+
return self._append_array(hdu.data, name=name, add_to=add_to)
+
+
nd = self._process_pixel_plane(
+
hdu, name=name, top_level=True, custom_header=header
+
)
+
return self._append_nddata(nd, name, add_to=None)
+
+
def _append_raw_nddata(self, raw_nddata, name, header, add_to):
+
logging.debug("Appending data to nddata: %s", name)
+
+
# We want to make sure that the instance we add is whatever we specify
+
# as NDDataObject, instead of the random one that the user may pass
+
top_level = add_to is None
+
+
if not isinstance(raw_nddata, NDDataObject):
+
raw_nddata = NDDataObject(raw_nddata)
+
+
processed_nddata = self._process_pixel_plane(
+
raw_nddata, top_level=top_level, custom_header=header
+
)
+
return self._append_nddata(processed_nddata, name=name, add_to=add_to)
+
+
def _append_nddata(self, new_nddata, name, add_to):
+
# NOTE: This method is only used by others that have constructed NDData
+
# according to our internal format. We don't accept new headers at this
+
# point, and that's why it's missing from the signature. 'name' is
+
# ignored. It's there just to comply with the _append_XXX signature.
+
if add_to is not None:
+
raise TypeError(
+
"You can only append NDData derived instances "
+
"at the top level"
+
)
+
+
hd = new_nddata.meta["header"]
+
hname = hd.get("EXTNAME", DEFAULT_EXTENSION)
+
+
if hname == DEFAULT_EXTENSION:
+
self._all_nddatas.append(new_nddata)
+
+
else:
+
raise ValueError(
+
f"Arbitrary image extensions can only be added "
+
f"in association to a '{DEFAULT_EXTENSION}'"
+
)
+
+
logging.debug("Appending data to nddata: %s", name)
+
+
return new_nddata
+
+
def _append_table(self, new_table, name, header, add_to):
+
tb = _process_table(new_table, name, header)
+
hname = tb.meta["header"].get("EXTNAME")
+
+
def find_next_num(tables):
+
table_num = 1
+
while f"TABLE{table_num}" in tables:
+
table_num += 1
+
return f"TABLE{table_num}"
+
+
if add_to is None:
+
# Find table names for all extensions
+
ext_tables = set()
+
for nd in self._nddata:
+
ext_tables |= set(
+
key
+
for key, obj in nd.meta["other"].items()
+
if isinstance(obj, Table)
+
)
+
+
if hname is None:
+
hname = find_next_num(set(self._tables) | ext_tables)
+
elif hname in ext_tables:
+
raise ValueError(
+
f"Cannot append table '{hname}' because it "
+
"would hide an extension table"
+
)
+
+
self._tables[hname] = tb
+
else:
+
if hname in self._tables:
+
raise ValueError(
+
f"Cannot append table '{hname}' because it "
+
"would hide a top-level table"
+
)
+
+
add_to.meta["other"][hname] = tb
+
+
return tb
+
+
def _append_astrodata(self, ad, name, header, add_to):
+
logging.debug("Appending astrodata object: %s", name)
+
+
if not ad.is_single:
+
raise ValueError(
+
"Cannot append AstroData instances that are "
+
"not single slices"
+
)
+
+
if add_to is not None:
+
raise ValueError(
+
"Cannot append an AstroData slice to another slice"
+
)
+
+
new_nddata = deepcopy(ad.nddata)
+
if header is not None:
+
new_nddata.meta["header"] = deepcopy(header)
+
+
return self._append_nddata(new_nddata, name=None, add_to=None)
+
+
def _append(self, ext, name=None, header=None, add_to=None):
+
"""
+
Internal method to dispatch to the type specific methods. This is
+
called either by ``.append`` to append on top-level objects only or
+
by ``__setattr__``. In the second case ``name`` cannot be None, so
+
this is always the case when appending to extensions (add_to != None).
+
"""
+
dispatcher = (
+
(NDData, self._append_raw_nddata),
+
((Table, fits.TableHDU, fits.BinTableHDU), self._append_table),
+
(fits.ImageHDU, self._append_imagehdu),
+
(AstroData, self._append_astrodata),
+
)
+
+
for bases, method in dispatcher:
+
if isinstance(ext, bases):
+
return method(ext, name=name, header=header, add_to=add_to)
+
+
# Assume that this is an array for a pixel plane
+
return self._append_array(ext, name=name, header=header, add_to=add_to)
+
+
+
[docs]
+
def append(self, ext, name=None, header=None):
+
"""
+
Adds a new top-level extension.
+
+
Parameters
+
----------
+
ext : array, `astropy.nddata.NDData`, `astropy.table.Table`, other
+
The contents for the new extension. The exact accepted types depend
+
on the class implementing this interface. Implementations specific
+
to certain data formats may accept specialized types (eg. a FITS
+
provider will accept an `astropy.io.fits.ImageHDU` and extract the
+
array out of it).
+
name : str, optional
+
A name that may be used to access the new object, as an attribute
+
of the provider. The name is typically ignored for top-level
+
(global) objects, and required for the others. If the name cannot
+
be derived from the metadata associated to ``ext``, you will
+
have to provider one.
+
It can consist in a combination of numbers and letters, with the
+
restriction that the letters have to be all capital, and the first
+
character cannot be a number ("[A-Z][A-Z0-9]*").
+
+
Returns
+
--------
+
The same object, or a new one, if it was necessary to convert it to
+
a more suitable format for internal use.
+
+
Raises
+
-------
+
TypeError
+
If adding the object in an invalid situation (eg. ``name`` is
+
`None` when adding to a single slice).
+
ValueError
+
Raised if the extension is of a proper type, but its value is
+
illegal somehow.
+
+
"""
+
if self.is_sliced:
+
raise TypeError(
+
"Can't append objects to slices, use "
+
"'ext.NAME = obj' instead"
+
)
+
+
# NOTE: Most probably, if we want to copy the input argument, we
+
# should do it here...
+
if isinstance(ext, fits.PrimaryHDU):
+
raise ValueError(
+
"Only one Primary HDU allowed. "
+
"Use .phu if you really need to set one"
+
)
+
+
if isinstance(ext, Table):
+
raise ValueError(
+
"Tables should be set directly as attribute, "
+
"i.e. 'ad.MYTABLE = table'"
+
)
+
+
if name is not None and not name.isupper():
+
warnings.warn(
+
f"extension name '{name}' should be uppercase", UserWarning
+
)
+
name = name.upper()
+
+
return self._append(ext, name=name, header=header)
+
+
+
+
[docs]
+
@classmethod
+
def read(cls, source, extname_parser=None):
+
"""Read from a file, file object, HDUList, etc."""
+
return read_fits(cls, source, extname_parser=extname_parser)
+
+
+
load = read # for backward compatibility
+
+
+
[docs]
+
def write(self, filename=None, overwrite=False):
+
"""
+
Write the object to disk.
+
+
Parameters
+
----------
+
filename : str, optional
+
If the filename is not given, ``self.path`` is used.
+
overwrite : bool
+
If True, overwrites existing file.
+
+
"""
+
if filename is None:
+
if self.path is None:
+
raise ValueError("A filename needs to be specified")
+
filename = self.path
+
+
write_fits(self, filename, overwrite=overwrite)
+
+
+
+
[docs]
+
def operate(self, operator, *args, **kwargs):
+
"""
+
Applies a function to the main data array on each extension, replacing
+
the data with the result. The data will be passed as the first argument
+
to the function.
+
+
It will be applied to the mask and variance of each extension, too, if
+
they exist.
+
+
This is a convenience method, which is equivalent to::
+
+
for ext in ad:
+
ext.data = operator(ext.data, *args, **kwargs)
+
if ext.mask is not None:
+
ext.mask = operator(ext.mask, *args, **kwargs)
+
if ext.variance is not None:
+
ext.variance = operator(ext.variance, *args, **kwargs)
+
+
with the additional advantage that it will work on single slices, too.
+
+
Parameters
+
----------
+
operator : callable
+
A function that takes an array (and, maybe, other arguments)
+
and returns an array.
+
args, kwargs : optional
+
Additional arguments to be passed to the ``operator``.
+
+
Examples
+
---------
+
>>> import numpy as np
+
>>> ad.operate(np.squeeze) # doctest: +SKIP
+
+
"""
+
# Ensure we can iterate, even on a single slice
+
for ext in [self] if self.is_single else self:
+
ext.data = operator(ext.data, *args, **kwargs)
+
if ext.mask is not None:
+
ext.mask = operator(ext.mask, *args, **kwargs)
+
if ext.variance is not None:
+
ext.variance = operator(ext.variance, *args, **kwargs)
+
+
+
+
[docs]
+
def reset(self, data, mask=NO_DEFAULT, variance=NO_DEFAULT, check=True):
+
"""
+
Sets the ``.data``, and optionally ``.mask`` and ``.variance``
+
attributes of a single-extension AstroData slice. This function will
+
optionally check whether these attributes have the same shape.
+
+
Parameters
+
----------
+
data : ndarray
+
The array to assign to the ``.data`` attribute ("SCI").
+
mask : ndarray, optional
+
The array to assign to the ``.mask`` attribute ("DQ").
+
variance: ndarray, optional
+
The array to assign to the ``.variance`` attribute ("VAR").
+
check: bool
+
If set, then the function will check that the mask and variance
+
arrays have the same shape as the data array.
+
+
Raises
+
-------
+
TypeError
+
if an attempt is made to set the .mask or .variance attributes
+
with something other than an array
+
ValueError
+
if the .mask or .variance attributes don't have the same shape as
+
.data, OR if this is called on an AD instance that isn't a single
+
extension slice
+
+
"""
+
if not self.is_single:
+
raise ValueError("Trying to reset a non-sliced AstroData object")
+
+
# In case data is an NDData object
+
try:
+
self.data = data.data
+
except AttributeError:
+
self.data = data
+
# Set mask, with checking if required
+
try:
+
if mask.shape != self.data.shape and check:
+
raise ValueError("Mask shape incompatible with data shape")
+
+
except AttributeError as err:
+
if mask is None:
+
self.mask = mask
+
+
elif mask == NO_DEFAULT:
+
if hasattr(data, "mask"):
+
self.mask = data.mask
+
+
else:
+
raise TypeError("Attempt to set mask inappropriately") from err
+
+
else:
+
self.mask = mask
+
+
# Set variance, with checking if required
+
try:
+
if variance.shape != self.data.shape and check:
+
raise ValueError("Variance shape incompatible with data shape")
+
+
except AttributeError as err:
+
if variance is None:
+
self.uncertainty = None
+
+
elif variance == NO_DEFAULT:
+
if hasattr(data, "uncertainty"):
+
self.uncertainty = data.uncertainty
+
+
else:
+
raise TypeError(
+
"Attempt to set variance inappropriately"
+
) from err
+
+
else:
+
self.variance = variance
+
+
if hasattr(data, "wcs"):
+
self.wcs = data.wcs
+
+
+
+
[docs]
+
def update_filename(self, prefix=None, suffix=None, strip=False):
+
"""Update the "filename" attribute of the AstroData object.
+
+
A prefix and/or suffix can be specified. If ``strip=True``, these will
+
replace the existing prefix/suffix; if ``strip=False``, they will
+
simply be prepended/appended.
+
+
The current filename is broken down into its existing prefix, root, and
+
suffix using the ``ORIGNAME`` phu keyword, if it exists and is
+
contained within the current filename. Otherwise, the filename is split
+
at the last underscore and the part before is assigned as the root and
+
the underscore and part after the suffix. No prefix is assigned.
+
+
Note that, if ``strip=True``, a prefix or suffix will only be stripped
+
if '' is specified.
+
+
Parameters
+
----------
+
prefix: str, optional
+
New prefix (None => leave alone)
+
+
suffix: str, optional
+
New suffix (None => leave alone)
+
+
strip: bool, optional
+
Strip existing prefixes and suffixes if new ones are given?
+
+
Raises
+
------
+
ValueError
+
If the filename cannot be determined
+
"""
+
if self.filename is None:
+
if "ORIGNAME" in self.phu:
+
self.filename = self.phu["ORIGNAME"]
+
else:
+
raise ValueError(
+
"A filename needs to be set before it can be updated"
+
)
+
+
# Set the ORIGNAME keyword if it's not there
+
if "ORIGNAME" not in self.phu:
+
self.phu.set(
+
"ORIGNAME",
+
self.orig_filename,
+
"Original filename prior to processing",
+
)
+
+
if strip:
+
root, filetype = os.path.splitext(self.phu["ORIGNAME"])
+
filename, filetype = os.path.splitext(self.filename)
+
m = re.match(f"(.*){re.escape(root)}(.*)", filename)
+
+
# Do not strip a prefix/suffix unless a new one is provided
+
if m:
+
if prefix is None:
+
prefix = m.groups()[0]
+
+
existing_suffix = m.groups()[1]
+
+
if "_" in existing_suffix:
+
last_underscore = existing_suffix.rfind("_")
+
root += existing_suffix[:last_underscore]
+
existing_suffix = existing_suffix[last_underscore:]
+
+
else:
+
try:
+
root, existing_suffix = filename.rsplit("_", 1)
+
existing_suffix = "_" + existing_suffix
+
+
except ValueError as err:
+
logging.info(
+
"Could not split filename (ValueError): %s", err
+
)
+
root, existing_suffix = filename, ""
+
+
if suffix is None:
+
suffix = existing_suffix
+
+
else:
+
root, filetype = os.path.splitext(self.filename)
+
+
# Cope with prefix or suffix as None
+
self.filename = (prefix or "") + root + (suffix or "") + filetype
+
+
+
def _crop_nd(self, nd, x1, y1, x2, y2):
+
y_start, y_end = y1, y2 + 1
+
x_start, x_end = x1, x2 + 1
+
+
nd.data = nd.data[y_start:y_end, x_start:x_end]
+
+
if nd.uncertainty is not None:
+
nd.uncertainty = nd.uncertainty[y_start:y_end, x_start:x_end]
+
+
if nd.mask is not None:
+
nd.mask = nd.mask[y_start:y_end, x_start:x_end]
+
+
+
[docs]
+
def crop(self, x1, y1, x2, y2):
+
"""Crop the NDData objects given indices.
+
+
Parameters
+
----------
+
x1, y1, x2, y2 : int
+
Minimum and maximum indices for the x and y axis.
+
+
"""
+
# TODO: Consider cropping of objects in the meta section
+
for nd in self._nddata:
+
orig_shape = nd.data.shape
+
self._crop_nd(nd, x1, y1, x2, y2)
+
for o in nd.meta["other"].values():
+
try:
+
if o.shape == orig_shape:
+
self._crop_nd(o, x1, y1, x2, y2)
+
except AttributeError:
+
# No 'shape' attribute in the object. It's probably
+
# not array-like
+
pass
+
+
+
+
[docs]
+
@astro_data_descriptor
+
def instrument(self):
+
"""Returns the name of the instrument making the observation."""
+
return self.phu.get(self._keyword_for("instrument"))
+
+
+
+
[docs]
+
@astro_data_descriptor
+
def object(self):
+
"""Returns the name of the object being observed."""
+
return self.phu.get(self._keyword_for("object"))
+
+
+
+
[docs]
+
@astro_data_descriptor
+
def telescope(self):
+
"""Returns the name of the telescope."""
+
return self.phu.get(self._keyword_for("telescope"))
+
+
+