-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
160 lines (123 loc) · 5.54 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
from torch import nn
from sklearn.metrics import confusion_matrix
# This file implements various utility functions.
def get_human_labels_outcomes(human_counts, true_labels, seed=0):
""" Converts from the counts to an ordered list of votes. Also computes the 0/1 Bernoulli outcomes.
"""
rng = np.random.default_rng(seed)
human_labels_per_input = np.sum(human_counts, axis=1)
min_human_labels = int(min(human_labels_per_input))
n_rows = human_counts.shape[0]
n_classes = human_counts.shape[1]
human_labels = np.empty(shape=(n_rows, min_human_labels))
human_outcomes = np.empty(shape=(n_rows, min_human_labels))
for row in range(n_rows):
temp = []
for i in range(n_classes):
temp += [i] * int(human_counts[row, i])
rng.shuffle(temp)
human_labels[row, :] = temp[:min_human_labels]
human_outcomes[row, :] = (human_labels[row, :] == true_labels[row]).astype(int)
return human_labels, human_outcomes
def simulate_single_human(human_counts, seed=0):
rng = np.random.default_rng(seed)
human_labels_per_input = np.sum(human_counts, axis=1)
min_human_labels = int(min(human_labels_per_input))
n_rows = human_counts.shape[0]
n_classes = human_counts.shape[1]
human_labels = np.empty(shape=(n_rows, min_human_labels))
for row in range(n_rows):
temp = []
for i in range(n_classes):
temp += [i] * int(human_counts[row, i])
rng.shuffle(temp)
human_labels[row, :] = temp[:min_human_labels]
return human_labels[:, 0].astype(int)
class SoftLogLoss(nn.Module):
# Implements the "soft-log-loss" for use with the EM algorithm
def __init__(self):
super(SoftLogLoss, self).__init__()
def forward(self, input, target):
# input is tensor of model logits (n_samples, n_cls)
# target is tensor of weight matrix (n_samples, n_cls)
# c.f. https://github.com/pytorch/pytorch/issues/7455
log_probs = nn.functional.log_softmax(input, dim=-1)
loss = -1. * (log_probs * target).sum(dim=-1).mean()
return loss
def get_model_confidence_ratio(model_probs, y_true, h=None, y=None, y_h=None, mode='diff'):
# args h / y : condition on Y = y and/or h(X) = h
# arg mode: 'max' or 'diff' -- determines denominator
if (h is None) and (y is None): # Unconditional
idxs = [True] * y_true.size
elif h is None: # Distribution conditioned on Y only
idxs = (y_true == y)
elif y is None: # Distribution conditioned on h only
idxs = (y_h == h)
else: # Distribution conditioned on y and h
idxs = np.logical_and((y_true == y), (y_h == h))
eps = 1e-16
model_probs = model_probs.clip(eps, 1. - eps)
n = y_true[idxs].size
_model_probs = model_probs[idxs]
_y_true = y_true[idxs]
model_confidence_ratio = np.empty(n)
for i in range(n):
true_class_conf = _model_probs[i][y_true[i]]
if mode == 'max':
denom = np.max([conf for j, conf in enumerate(_model_probs[i]) if j != _y_true[i]])
elif mode == 'diff':
denom = 1. - true_class_conf
model_confidence_ratio[i] = true_class_conf / denom
return model_confidence_ratio
def get_human_confidence_ratio(y_h_tr, y_true_tr, y_h_te, y_true_te, n_cls, h=None, y=None, mode='diff'):
# Estimate human confusion matrix
# Entry [i, j] is #(Y = i and h = j)
conf_h = 1. * confusion_matrix(y_true_tr, y_h_tr, labels=np.arange(n_cls))
# Swap so entry [i, j] is #(h = i and Y = j)
conf_h = conf_h.T
eps = 1e-50
conf_h = np.clip(conf_h, eps, None)
normalizer = np.sum(conf_h, axis=0, keepdims=True)
# Normalize columns so entry [i, j] is P(h = i | Y = j)
conf_h /= normalizer
if (h is None) and (y is None): # Unconditional
idxs = [True] * y_true_te.size
elif h is None: # Distribution conditioned on Y only
idxs = (y_true_te == y)
elif y is None: # Distribution conditioned on h only
idxs = (y_h_te == h)
else: # Distribution conditioned on y and h
return conf_h[h, y] / (1. - conf_h[h, y])
n = y_true_te[idxs].size
_y_true = y_true_te[idxs]
human_confidence_ratio = np.empty(n)
for i in range(n):
true_class_conf = conf_h[y_h_te[i], _y_true[i]]
if mode == 'max':
denom = np.max([conf for j, conf in enumerate(conf_h[y_h_te[i], :]) if j != _y_true[i]])
elif mode == 'diff':
denom = 1. - true_class_conf
human_confidence_ratio[i] = true_class_conf / denom
return human_confidence_ratio
def get_dirichlet_params(acc, strength, n_cls):
# acc: desired off-diagonal accuracy
# strength: strength of prior
# Returns alpha,beta where the prior is Dir((beta, beta, . . . , alpha, . . . beta))
# where the alpha appears for the correct class
beta = 0.1
alpha = beta * (n_cls - 1) * acc / (1. - acc)
alpha *= strength
beta *= strength
alpha += 1
beta += 1
return alpha, beta
def diversity(y1, y2, y_t):
y1_outcomes = (y1 == y_t)
y2_outcomes = (y2 == y_t)
n = y_t.size
both_correct = sum((y1_outcomes == 1) & (y2_outcomes == 1)) / n
both_incorrect = sum((y1_outcomes == 0) & (y2_outcomes == 0)) / n
y1c_y2w = sum((y1_outcomes == 1) & (y2_outcomes == 0)) / n
y1w_y2c = sum((y1_outcomes == 0) & (y2_outcomes == 1)) / n
return both_correct, both_incorrect, y1c_y2w, y1w_y2c