-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dictionnaire.tex
1968 lines (1750 loc) · 76.6 KB
/
Dictionnaire.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% !Mode:: "TeX:UTF-8"
% @ Commone Head File
\input{ArticleHead}
% @ Theorem Environments
\input{Theorem/margin-section}
\input{Head-after}
\input{Theorem/theoremlists}
%
% PDF File Information
%
\hypersetup{
pdftitle={Deligne: Equations Différentielles à Points Singuliers Réguliers},%标题
pdfauthor={Xu Gao}, %作者
% pdfproducer={XeLaTeX}, %制作工具
bookmarksopen=true, %书签自动打开
colorlinks=true, %是否采用彩色超链接
citecolor=red, %文献引用的颜色
filecolor=black, %文件链接颜色
linkcolor=black, %内部链接颜色
urlcolor=darkgray %网页与电邮链接颜色
}
%
% TITLE
%
\title{
Deligne's \bigskip \\
\texttt{\Huge Equations Diff\'{e}rentielles \`{a} Points Singuliers R\'{e}guliers}\\
Part I: Dictionnaire
}
\author{
Note: Xu Gao
}
\date{
Last update:\today
}
\begin{document}
\maketitle
\begin{abstract}
This is a reading note of Part I (\emph{Dictionnaire}) of Deligne's
``\emph{Equations Diff\'{e}rentielles \`{a} Points Singuliers R\'{e}guliers}''.
Although closely follows the original French text, it is not a faithful
English-translation: some supplementary materials are inserted and the
numbering is thus different.
\end{abstract}
\tableofcontents
\clearpage
\section{Local systems and fundamenal group}
\begin{definition}
Let $X$ be a topological space. A \itblue{(complex) local system} on $X$ is a
sheaf of complex vector spaces on $X$ which, locally on $X$, is isomorphic to
the constant sheaf $\underline{\CC^n}$ ($n\in\NN$).
\end{definition}
\begin{para}\label{hypothesis:1.2}
Let $X$ be a \emph{locally path-connected} and
\emph{locally simply connected}
topological space, equipped with a base point $x_0\in X$.
Let $\Ff$ be a locally constant sheaf on $X$.
For each path $\alpha\colon[0,1]\to X$, the pullback $\alpha^{\ast}\Ff$
of $\Ff$ on $[0,1]$ is a locally constant sheaf, hence constant and there
exists a quniue isomorphism between $\alpha^{\ast}\Ff$ and the constant
sheaf defined by the set $(\alpha^{\ast}\Ff)_0 = \Ff_{\alpha(0)}$.
This isomorphism defines an isomorphism $\alpha(\Ff)$ between
$(\alpha^{\ast}\Ff)_0$ and $(\alpha^{\ast}\Ff)_1$, i.e. an isomorphism
\[
\alpha(\Ff)\colon \Ff_{\alpha(0)}\To\Ff_{\alpha(1)}.
\]
This isomorphism depends only on the homotopy class of $\alpha$ and satisfies
$\alpha\beta(\Ff)=\alpha(\Ff)\circ\beta(\Ff)$.
In particular, $\pi_1(X,x_0)$ acts (on the left) on the stalk $\Ff_{x_0}$ of
$\Ff$ at $x_0$.
\end{para}
\begin{proposition}\label{prop:equivalence_monodromy}
Under the hypothesis \ref{hypothesis:1.2}, with $X$ being connected,
the functor $\Ff\mapsto\Ff_{x_0}$ is an equivalence between
the category of locally constant sheaves on $X$ and
the category of left $\pi_1(X,x_0)$-sets.
\end{proposition}
\begin{subpara}\label{def:monodromy_action}
Let $p\colon Y\to X$ be a covering space.
For each path $\alpha\colon[0,1]\to X$ and
$y\in Y_{\alpha(0)}:=p^{-1}(\alpha(0))$,
there exists a unique path $\widetilde{\alpha}\colon[0,1]\to Y$ such that
$p\circ\widetilde{\alpha}=\alpha$ and $\widetilde{\alpha}(0)=y$.
Thus $\alpha.y:=\widetilde{\alpha}(1)\in Y_{\alpha(1)}$.
This construction defines a bijective map from $Y_{\alpha(0)}$
to $Y_{\alpha(1)}$ and depends only on the homotopy class of $\alpha$
and satisfies $\alpha\beta.y=\alpha.(\beta.y)$.
In particular, it defines an left action (the \itblue{monodromy action})
of $\pi_1(X,x_0)$ on the fiber $Y_{x_0}$.
\end{subpara}
\begin{Remark}
Let $p\colon Y\to X$ be a covering space and $\alpha$ be a path in $X$.
Then the pullback $\alpha^{\ast}Y$ of $Y$ along $\alpha$ is a covering space
of $[0,1]$, hence trivial.
\[
\begin{tikzcd}
\alpha^{\ast}Y\ar[r,"{\alpha'}"]\ar[d,"{p'}"] & Y\ar[d,"p"]\\
{[0,1]}\ar[r]\ar[u,bend left,dashed] & X
\end{tikzcd}
\]
For each point $y$ in the fiber $Y_{\alpha(0)}$,
there is a unique preimage $y'$ in the fiber $(\alpha^{\ast}Y)_0$.
As $p'$ is a trivial covering, such a point uniquely determines a section of
$p'$. It is clear that the composition of this section with $\alpha'$ gives
a lifting of $\alpha$ into $Y$ starting from $y$ and any such lifting is given
in this way.
\end{Remark}
\begin{subproposition}
Under the hypothesis \ref{hypothesis:1.2}, with $X$ being connected,
the monodromy actions define an equivalence bewteen
the category of covering spaces of $X$ and
the category of left $\pi_1(X,x_0)$-sets.
\end{subproposition}
\begin{subpara}
Let $\Ff$ be a sheaf on $X$. We construct a space $X_{\Ff}$ over $X$
as follows:
the underlying set is the disjoint union of all stalks of $\Ff$ and
the projection is induced by the maps $\Ff_x\to\{x\}$;
the topology is the coarsest one in which every section $s\in\Ff(U)$ gives
an open set $s(U):=\{(s_x,x):x\in U\}$.
When $\Ff$ is locally constant, this construction gives a covering space of
$X$ whose sheaf of sections is isomorphic to $\Ff$.
\end{subpara}
\begin{subproposition}
The functor $\Ff\to X_{\Ff}$ is an equivalence between
the category of locally constant sheaves and
the category of covering spaces of $X$.
\end{subproposition}
Combining the above two propositions, after verfying the composition of those
equivalences cocides with the functor $\Ff\mapsto\Ff_{x_0}$, the statement
follows.
\begin{corollary}\label{cor:1.4}
Under the hypothesis \ref{hypothesis:1.2}, with $X$ being connected,
the functor $\Ff\mapsto\Ff_{x_0}$ is an equivalence between
the category of local systems on $X$ and
the category of finite-dimensional complex representations of $\pi_1(X,x_0)$.
\end{corollary}
\begin{para}\label{hypothesis:1.5}
Under the hypothesis \ref{hypothesis:1.2}, if $\alpha$ is a path and $\beta$
a loop from $\alpha(0)$, so $\alpha(\beta):=\alpha\beta\alpha^{-1}$ is a loop
from $\alpha(1)$ and its homotopy class depends only on those of $\alpha$ and
$\beta$. This construction defines an isomorphism between $\pi_1(X,\alpha(0))$
and $\pi_1(X,\alpha(1))$.
\end{para}
\begin{proposition}\label{prop:fundamental_groupoid}
Under the hypothesis \ref{hypothesis:1.5}, there exists,
uniquely up to a unique isomorphism, a locally constant sheaf of groups
$\Pi_1(X)$ on $X$ (the \itblue{fundamental groupoid}), equipped with,
for every $x_0\in X$, an isomorphism
\begin{equation}\label{eq:1.6.1}
{\Pi_1(X)}_{x_0}\Isom\pi_1(X,x_0)
\end{equation}
such that, for any path $\alpha$,
the isomorphism in \ref{hypothesis:1.5}
between $\pi_1(X,\alpha(0))$ and $\pi_0(X,\alpha(1))$ is
identified via \cref{eq:1.6.1} with
the isomorphism \ref{hypothesis:1.2} between
${\Pi_1(X)}_{\alpha(0)}$ and ${\Pi_1(X)}_{\alpha(1)}$.
Moreover, if $X$ is connected with base point $x_0$, the sheaf $\Pi_1(X)$
corresponds, via equivalence \ref{prop:equivalence_monodromy},
to the group $\pi_1(X,x_0)$
with its action on itself by internal automorphisms.
\end{proposition}
Instead of proving the proposition directly, I prefer to relate this definition
with the more common one.
\begin{subpara}
For $X$ a topological space, its \itblue{fundamental groupoid} is the category
$\Pi_1(X)$ whose objects are points of $X$ and whose morphisms are homotopy
classes of paths.
It turns out that $\Pi_1(X)$ is a \emph{topological groupoid}.
Let $\widetilde{X}$ be the set of all morphisms in $\Pi_1(X)$.
Then there is a topology on $\widetilde{X}$ such that all the operations
(source, target, identity and composition) are continuous maps.
In this way, we get a covering space
\[
\widetilde{X}\markar{(s,t)}X\times X,
\]
where $s$ and $t$ are the source and target operations.
\end{subpara}
\begin{Remark}
In detail, the topology on $\widetilde{X}$ is given as follows.
First, given any point $x\in X$,
there is a basis of neighborhoods $\Bb_x$ whose members are path-connected
open neighborhoods $U\subset X$ of $x$ such that the induced homomorphism
$\pi_1(U,x)\to\pi_1(X,x)$ is trivial. Then, each of such open neighborhood
$U$ can be lifted into a subset $\widetilde{U}_x$ of $\widetilde{X}$:
\[
\widetilde{U}_x:=
\big\{[\alpha]:\text{$\alpha$ is a path in $U$ starting from $x$}\big\}.
\]
For each point $y$ in $\widetilde{X}$ with a path $\gamma$ presenting it,
the family
\[
\Big\{\widetilde{V}_{\gamma(1)}\gamma\widetilde{U}_{\gamma(0)}^{-1}\Big\}
_{U\in\Bb_{\gamma(0)},V\in\Bb_{\gamma(1)}},
\]
where
\[
\widetilde{V}_{\gamma(1)}\gamma\widetilde{U}_{\gamma(0)}^{-1}=
\big\{
[\beta\gamma\alpha^{-1}]:
\alpha\in\widetilde{U}_{\gamma(0)},
\beta\in\widetilde{V}_{\gamma(1)}
\big\},
\]
form a basis of neighborhoods of $y$ in $\widetilde{X}$.
\end{Remark}
\begin{subpara}
Let $\Delta\colon X\to X\times X$ be the diagonal map. Then the pullback of
the covering $\widetilde{X}\to X\times X$ along $\Delta$ gives a covering
space $\widetilde{X}_{\Delta}\to X$.
For each point $x$ of $X$, the fiber of $\widetilde{X}_{\Delta}$ at $x$ is
$\pi_1(X,x)$, and the monodromy actions are given by the inner automorphisms.
Hence, $\widetilde{X}_{\Delta}$ is a group bundle over $X$.
Let $\alpha$ be a path in $X$ and $\beta$ a loop presenting a point $y$ in
the fiber $\widetilde{X}_{\Delta,\alpha(0)}$. Then, the unique lifting of
$\alpha$ starting from $y$ is given by
$\widetilde{\alpha}(t)=\alpha_t \beta \alpha_t^{-1}$,
where $\alpha_t$ is the path $\alpha_t(s):=\alpha(ts)$.
Therefore, the bijective map
$\widetilde{X}_{\Delta,\alpha(0)}\to\widetilde{X}_{\Delta,\alpha(1)}$
given by such liftings is nothing but the conjugate operation
$[\beta]\mapsto[\alpha][\beta][\alpha]^{-1}$.
Now, consider the sheaf of sections of $\widetilde{X}_{\Delta}\to X$, denoted
also by $\Pi_1(X)$. The observations in previous paragraphs implies
\cref{prop:fundamental_groupoid}.
\end{subpara}
\begin{proposition}
If $\Ff$ is a locally constant sheaf on $X$, there exists a canonical action
of $\Pi_1(X)$ on $\Ff$ which, at each $x_0\in X$, induces the action
\ref{hypothesis:1.2} of $\pi_1(X,x_0)$ on $\Ff_{x_0}$.
\end{proposition}
It suffices to give the action of the group bundle $\widetilde{X}_{\Delta}$ on
an arbitrary covering space $Y\to X$.
This action is precisely the monodromy action, which is already defined in
\ref{def:monodromy_action}.
\clearpage
\section{Integrable connections and local systems}
From now on, an \itblue{analytic space} means a complex analytic space locally
of finite dimension and supposed to be $\sigma$-compact, while not necessarily
separated; a \itblue{complex analytic manifold} means a non-singular (or smooth)
analytic space.
\begin{para}
Let $X$ be an analytic space. A \itblue{(holomorphic) vector bundle} on $X$ is
a locally free $\Oo_X$-module of finite type. If $\Vv$ is a vector bundle on
$X$ and $x$ is a point of $X$,
we denote by $\Vv_{(x)}$ the finite free $\Oo_{(x)}$-module
of germs of sections of $\Vv$. If $\mm_x$ is the maximal ideal of $\Oo_{(x)}$,
the \itblue{fiber} at $x$ of the vector bundle $\Vv$ is
the following vector space of finite rank:
\[
\Vv_x:=\Vv_{(x)}\otimes_{\Oo_{(x)}}\Oo_{(x)}/\mm_x.
\]
If $f\colon X\to Y$ is a morphism of analytic spaces,
the \itblue{pullback} $f^\ast\Vv$ on $X$
of the vector bundle $\Vv$ on $Y$ is
\[
f^\ast\Vv:=\Oo_X\otimes_{f^{-1}\Oo_Y}f^{-1}\Vv.
\]
In particular, if $x\colon\pt\to X$ is morphism from the punctual sapce $\pt$
to $X$ defined by the point $x$ of $X$, we have
\[
\Vv_x\cong x^\ast\Vv.
\]
\end{para}
\begin{para}
Let $X$ be a complex analytic manifold and $\Vv$ be a vector bundle on $X$.
The ancients would have defined \emph{ (holomorphic) connection} on $\Vv$
as the data: for any pair $(x,y)$ of infinitesimally near points of
first order of $X$, an isomorphism $\gamma_{x,y}\colon\Vv_x\to\Vv_y$,
this isomorphism depends holomorphically on $(x,y)$ and satisfies
$\gamma_{x,x}=\Id$.
If interpreted correctly, this ``definition'' coincides with the definition in
2.2.4 below (which will not be used in the rest of the section).
To obtain it, it suffices to interpret ``point'' as
``point valued in any analytic space'':
\begin{subpara}
A \itblue{point of the analytic space $X$ with values in the analytic space
$S$} is a morphism from $S$ to $X$.
\end{subpara}
\begin{subpara}
If $Y$ is a subspace of $X$, the \itblue{$n$-th infinitesimal neighborhood}
of $Y$ in $X$ is the subspace of $X$ locally defined by the $(n+1)$-th power
of the ideal of $\Oo_X$ defining $Y$.
\end{subpara}
\begin{subpara}
Two points $x,y$ of $X$ with values in $S$ is said to be
\itblue{infinitesimally near of first order} if
the map $(x,y)\colon S\to X\times X$ they defined factors through the
first infinitesimal neighborhood of the diagonal of $X\times X$.
\end{subpara}
\begin{subpara}\label{defn:(holomorphic)_connection}
If $X$ is a complex analytic manifold and $\Vv$ is a vector bundle on $X$,
a \itblue{(holomorphic) connection} $\gamma$ on $\Vv$ consists of
the following data:
\begin{itemize}
\item for every pair $(x,y)$ of points of $X$ with values in any analytic
space $S$, with $x$ and $y$ being infinitesimally near of first order,
we give $\gamma_{x,y}\colon x^\ast\Vv\to y^\ast\Vv$;
\end{itemize}
this data is subject to the conditions:
\begin{enumerate}
\item For any $f\colon T\to S$ and two points $x,y\colon S\tto X$
infinitesimally near of first order, we have
$f^\ast(\gamma_{x,y})=\gamma_{xf,yf}$.
\item We have $\gamma_{x,x}=\Id$.
\end{enumerate}
\end{subpara}
\end{para}
\begin{para}
Let $X_1$ be the first infinitesimal neighborhood of the diagonal $X_0$ of
$X\times X$, and $p_1$, $p_2$ the two projections of $X_1$ to $X$.
By definition, the vector bundle $P^1(\Vv)$ of the \itblue{jets of sections
of first order} of $\Vv$ is the bundle $p_{1\ast}p_2^{\ast}\Vv$.
We denote by $j^1$ the differential operator of first order which associates
each section of $\Vv$ its jet of first order:
\[
j^1\colon\Vv\To P^1(\Vv)\cong\Oo_{X_1}\otimes_{\Oo_X}\Vv.
\]
A connection in the sense of \ref{defn:(holomorphic)_connection} can be
interpreted as a homomorphism (automatically isomorphism)
\[
\gamma\colon p_1^{\ast}\Vv\To p_2^{\ast}\Vv
\]
which induces the identity above $X_0$. Since
\[
\Hom_{X_1}(p_1^{\ast}\Vv,p_2^{\ast}\Vv) \cong
\Hom(\Vv,p_{1\ast}p_2^{\ast}\Vv),
\]
a connection is also interpreted as a ($\Oo$-linear) homomorphism
\[
D\colon\Vv\To P^1(\Vv)
\]
such that the following composition
\[
\Vv\markar{D}P^1(\Vv)\To\Vv
\]
is the identity.
The sections $D(s)$ and $j^1(s)$ of $P^1(\Vv)$ have the same image in $\Vv$,
and $j^1(s)-D(s)$ identifies with a section $\nabla s$ of
$\Omega_X^1\otimes\Vv\cong\Ker(P^1(\Vv)\to\Vv)$:
\[
\nabla\colon\Vv\To\Omega_X^1(\Vv).
\]
In other words, a connection (\ref{defn:(holomorphic)_connection}),
permiting to compare two neighboring fibers of $\Vv$,
also permit to define the \itblue{differential} $\nabla s$ of a section $s$ of
$\Vv$.
Conversely, the formula
\begin{equation}
j^1(s) = D(s) + \nabla s
\end{equation}
permit to define $D$ hence $\gamma$ from the covariant derivative $\nabla$.
For $D$ to be linear, it is necessary and sufficient that $\nabla$ satisfies
the identity
\begin{equation}\label{eq:Leibniz}
\nabla(fs) = \di f\otimes s + f.\nabla s.
\end{equation}
The definition \ref{defn:(holomorphic)_connection} is therefore equivalent to
the following definition, due to J.L. Koszul.
\end{para}
\begin{definition}\label{defn:holomorphic_connection}
Let $\Vv$ be a (holomorphic) vector bundle on a complex analytic manifold $X$.
A \itblue{holomorphic connection} (or simply, \itblue{connection}) on $\Vv$ is
$\CC$-linear homomorphism
\[
\nabla\colon\Vv\To\Omega_X^1(\Vv):=\Omega_X^1\otimes\Vv
\]
satisfying the Leibniz identity \cref{eq:Leibniz} for $f$ and $s$ any local
sections of $\Oo$ and $\Vv$.
We call $\nabla$ the \itblue{covariant derivative} defined by the connection.
\end{definition}
\begin{para}
If the vector bundle $\Vv$ is provided with a connection $\Gamma$ of covariant
derivative $\nabla$, and if $w$ is a holomorphic vector field on $X$, we put,
for every local section $v$ of $\Vv$ on open $U$ of $X$,
\[
\nabla_w(v):=\<\nabla v, w\> \in\Vv(U).
\]
We call $\nabla_w\colon\Vv\to\Vv$ the
\itblue{covariant derivative along the vector field} $w$.
\end{para}
\begin{para}\label{remark:torsor}
If $\prescript{}{1}{\Gamma}$ and $\prescript{}{2}{\Gamma}$ are two
connections, of covariant derivatives $\prescript{}{1}{\nabla}$ and
$\prescript{}{2}{\nabla}$, then
$\prescript{}{2}{\nabla}-\prescript{}{1}{\nabla}$ is an $\Oo$-linear
homomorphism from $\Vv$ to $\Omega_X^1(\Vv)$.
Conversely, the sum of $\prescript{}{1}{\nabla}$ and such a homomorphism
defines a connection on $\Vv$.
Thus, the connections on $\Vv$ form a \emph{homogeneous principal space}
(or \emph{torsor}) under
$\CHom(\Vv,\Omega_X^1(\Vv))\cong\Omega_X^1(\CEnd(\Vv))$.
\end{para}
\begin{para}
If vector bundles are provided with connections, any vector bundle which is
deduced by a tensor operation is still provided with a connection.
This is evident on \ref{defn:(holomorphic)_connection}.
Specifically, let $\Vv_1$ and $\Vv_2$ be two vector bundles with
connections of covariant derivatives $\prescript{}{1}{\nabla}$ and
$\prescript{}{2}{\nabla}$.
\begin{subpara}
We define a connection on $\Vv_1\oplus\Vv_2$ by the formula
\[
\nabla_w(v_1+v_2)=
\prescript{}{1}{\nabla}_w(v_1)+\prescript{}{2}{\nabla}_w(v_2).
\]
\end{subpara}
\begin{subpara}
We define a connection on $\Vv_1\otimes\Vv_2$ by the formula
\[
\nabla_w(v_1\otimes v_2)=
\prescript{}{1}{\nabla}_w(v_1)\otimes v_2+
v_1\otimes\prescript{}{2}{\nabla}_w(v_2).
\]
\end{subpara}
\begin{subpara}\label{defn:connection_on_Hom}
We define a connection on $\CHom(\Vv_1,\Vv_2)$ by the formula
\[
(\nabla_wf)(v_1)=
\prescript{}{2}{\nabla}_w(f(v_1))-
f(\prescript{}{1}{\nabla}_w(v_1)).
\]
\end{subpara}
The canonical connection on $\Oo$ is the connection
for which $\partial f = \di f$.
Let $\Vv$ be a vector bundle with a connection.
\begin{subpara}
We define a connection on the dual $\Vv^{\vee}$ of $\Vv$ via
\ref{defn:connection_on_Hom} and the isomorphism of the definition
$\Vv^{\vee}=\CHom(\Vv,\Oo)$. We have
\[
\<\nabla_w v', v\> = \partial_w\<v',v\> - \<v',\nabla_w v\>.
\]
\end{subpara}
\end{para}
\begin{para}
An $\Oo$-homomorphism $f$ between vector bundles $\Vv_1$ and $\Vv_2$ equipped
with connections is said \itblue{compatible with connections} if
\[
\prescript{}{2}{\nabla}.f = f.\prescript{}{1}{\nabla}.
\]
According to \ref{defn:connection_on_Hom}, this is to say that $\nabla f =0$,
if $f$ is regarded as a section of $\CHom(\Vv_1,\Vv_2)$.
For example, according to \ref{defn:connection_on_Hom},
the canonical homomorphism
\[
\CHom(\Vv_1,\Vv_2)\otimes\Vv_1\To\Vv_2
\]
is compatible with connections.
\end{para}
\begin{para}
A local section $v$ of $\Vv$ is said to be \itblue{horizontal} if
$\nabla v=0$. If $f$ is a homomorphism between vector bundles $\Vv_1$ and
$\Vv_2$ equipped with connections, it is then the same to say that $f$ is
horizontal and that $f$ is compatible with connections.
\end{para}
\begin{para}\label{hypothesis:2.10}
Let $\Vv$ be a holomorphic vector bundle on $X$.
We put $\Omega_X^p=\bigwedge^p\Omega_X^1$ and
$\Omega_X^p(\Vv)=\Omega_X^p\otimes_\Oo\Vv$
(sheaf of the \itblue{external differential $p$-forms with values in} $\Vv$).
Suppose that $\Vv$ is provided with a holomorphic connection.
We thus define a $\CC$-linear homomorphism
\begin{equation}\label{eq:nabla}
\nabla\colon\Omega_X^p(\Vv)\To\Omega_X^{p+1}(\Vv)
\end{equation}
characterized by the following formula
\begin{equation}\label{eq:Leibniz_higher}
\nabla(\alpha\otimes v) = \di\alpha\otimes v + (-1)^p\alpha\wedge\nabla v,
\end{equation}
where $\alpha$ is a local section of $\Omega_X^p$, $v$ is a local section of
$\Vv$ and $\di$ is the external differential.
To verify that the right hand side $\mathrm{I\!I}(\alpha, v)$ of
\cref{eq:Leibniz_higher} defines a homomorphism \cref{eq:nabla},
it is sufficient to verify that $\mathrm{I\!I}(\alpha, v)$ is
$\CC$-bilinear and that
\[
\mathrm{I\!I}(f\alpha, v) = \mathrm{I\!I}(\alpha, fv).
\]
In fact, we have
\begin{align*}
\mathrm{I\!I}(f\alpha, v) &=
\di(f\alpha)\otimes v + (-1)^pf\alpha\wedge\nabla v \\
&= \di\alpha\otimes fv + \di f\wedge\alpha\otimes v
+ (-1)^pf\alpha\wedge\nabla v \\
&= \di\alpha\otimes fv + (-1)^p\alpha\wedge(f\nabla v + \di f\otimes v) \\
&= \mathrm{I\!I}(\alpha, fv).
\end{align*}
Let $\Vv_1$ and $\Vv_2$ be two vector bundles with connections and let $\Vv$
be their tensor product. We denote by $\wedge$ the evident morphism
\[
\wedge\colon\Omega_X^p(\Vv_1)\otimes\Omega_X^q(\Vv_2)\To\Omega_X^{p+q}(\Vv)
\]
such that, for $\alpha$, $\beta$, $v_1$, $v_2$ local sections of
$\Omega_X^p$, $\Omega_X^q$, $\Vv_1$, $\Vv_2$, we have
\[
(\alpha\otimes v_1)\wedge(\beta\otimes v_2)
= (\alpha\wedge\beta)\otimes(v_1\otimes v_2).
\]
If $\nu_1$ (resp. $\nu_2$) is a local section of
$\Omega_X^p(\Vv_1)$ (resp. $\Omega_X^q(\Vv_2)$), we have
\begin{equation}
\nabla(\nu_1\wedge\nu_2) =
\nabla\nu_1\wedge\nu_2 + (-1)^p\nu_1\wedge\nabla\nu_2.
\end{equation}
In fact, if $\nu_1=\alpha\otimes v_1$ and $\nu_2=\beta\otimes v_2$, we have
\begin{align*}
\nabla(\nu_1\wedge\nu_2) &=
\nabla(\alpha\wedge\beta\otimes v_1\otimes v_2) \\ &=
\di(\alpha\wedge\beta)\otimes v_1\otimes v_2 +
(-1)^{p+q}\alpha\wedge\beta\wedge\nabla(v_1\otimes v_2) \\ &=
\di\alpha\wedge\beta\otimes v_1\otimes v_2 +
(-1)^p\alpha\wedge\di\beta\otimes v_1\otimes v_2 \\ &\quad+
(-1)^{p+q}\alpha\wedge\beta\wedge\nabla v_1 \otimes v_2 +
(-1)^{p+q}\alpha\wedge\beta\otimes v_1\wedge\nabla v_2 \\ &=
\di\alpha\otimes v_1\wedge \nu_2 +
(-1)^p\nu_1\wedge\di\beta\otimes v_2 \\ &\quad+
(-1)^p\alpha\wedge\nabla v_1\wedge\nu_2 +
(-1)^{p+q}\nu_1\wedge\beta\wedge\nabla v_2 \\ &=
\nabla\nu_1\wedge\nu_2 + (-1)^p\nu_1\wedge\nabla\nu_2.
\end{align*}
Let $\Vv$ be a vector bundle with a connection.
If we apply the previous formula to $\Oo$ and $\Vv$, we find that for every
local section $\alpha$ (resp, $\nu$) of
$\Omega_X^p$ (resp. $\Omega_X^q(\Vv)$), we have
\begin{equation}\label{eq:Leibniz_OV}
\nabla(\alpha\wedge\nu) = \di\alpha\wedge\nu + (-1)^p\alpha\wedge\nabla\nu.
\end{equation}
Repeating this formula provides
\begin{align*}
\nabla\nabla(\alpha\wedge\nu) &=
\nabla(\di\alpha\wedge\nu+(-1)^p\alpha\wedge\nabla\nu) \\ &=
\di\di\alpha\wedge\nu+(-1)^{p+1}\di\alpha\wedge\nabla\nu +
(-1)^p\di\alpha\wedge\nabla\nu+\alpha\wedge\nabla\nabla\nu \\ &=
\alpha\wedge\nabla\nabla\nu.
\end{align*}
\end{para}
\begin{definition}\label{defn:curvature-explicit}
Under the hypothesis \ref{hypothesis:2.10}, the \itblue{curvature} $\Rr$ of
the connection on $\Vv$ is composed homomorphism:
\[
\nabla\circ\nabla\colon\Vv\To\Omega_X^2(\Vv)
\]
viewed as a section of
$\CHom(\Vv,\Omega_X^2(\Vv))\cong\Omega_X^2(\CEnd(\Vv))$.
\end{definition}
\begin{para}
The formula \cref{eq:Leibniz_OV} for $q=0$ provides
\begin{equation}
\nabla\nabla(\alpha\otimes v) = \alpha\wedge\Rr(v),
\end{equation}
which is also written as
\begin{equation}\label{eq:Ricci}
\nabla\nabla(\nu)=\Rr\wedge\nu\qquad\text{(\itblue{Ricci identity})}.
\end{equation}
Providing $\CEnd(\Vv)$ with the connection \ref{defn:connection_on_Hom},
the formula $\nabla(\nabla\nabla)=(\nabla\nabla)\nabla$ can be written as
$\nabla(\Rr\wedge\nu)=\Rr\wedge\nabla\nu$.
According to \ref{defn:connection_on_Hom}, we have
$\nabla\Rr\wedge\nu = \nabla(\Rr\wedge\nu) - \Rr\wedge\nabla\nu$ so that
\begin{equation}\label{eq:Bianchi}
\nabla\Rr = 0\qquad\text{(\itblue{Bianchi identity})}.
\end{equation}
\end{para}
\begin{para}\label{defn:curvature}
If $\alpha$ is a $p$-form, we know that
\begin{align*}
\<\di\alpha,X_0\wedge\cdots\wedge X_p\> &=
\sum (-1)^i\partial_{X_1}
\<\alpha,X_0\wedge\cdots\widehat{X_i}\cdots\wedge X_p\> \\
&\quad+
\sum_{i<j}(-1)^{i+j}\<\alpha,[X_i,X_j]\wedge X_0
\wedge\cdots\widehat{X_i}\cdots\widehat{X_j}\cdots\wedge X_p\>.
\end{align*}
From this formula and \cref{eq:Leibniz_higher}, we find that for every local
section $\nu$ of $\Omega_X^p(\Vv)$ and holomorphic vector fields
$X_0,\cdots,X_p$, we have
\begin{align*}
\<\nabla\nu,X_0\wedge\cdots\wedge X_p\> &=
\sum (-1)^i\nabla_{X_1}
\<\nu,X_0\wedge\cdots\widehat{X_i}\cdots\wedge X_p\> \\
&\quad+
\sum_{i<j}(-1)^{i+j}\<\nu,[X_i,X_j]\wedge X_0
\wedge\cdots\widehat{X_i}\cdots\widehat{X_j}\cdots\wedge X_p\>.
\end{align*}
In particular, for $v$ a loacl section of $\Vv$, we have
\[
\<\nabla\nabla v, X_1\wedge X_2\> =
\nabla_{X_1}\<\nabla v,X_2\> - \nabla_{X_2}\<\nabla v,X_1\> +
\<\nabla,[X_1,X_2]\>.
\]
Let
\[
\Rr(X_1,X_2)(v):=
\nabla_{X_1}\nabla_{X_2}v-\nabla_{X_2}\nabla_{X_1}v
-\nabla_{[X_1,X_2]}v.
\]
\end{para}
\begin{definition}\label{defn:integrable_connections}
A connection is said to be \itblue{integrable} if its curvature is zero, i.e.
if we have tha identity
\[
\nabla_{[X,Y]} = [\nabla_X,\nabla_Y].
\]
\end{definition}
If $\dim(X)\le 1$, every connection is integrable.
If $\Gamma$ is a integrable connection on $\Vv$, the morphism $\nabla$ in
\cref{eq:nabla} satisfies $\nabla\nabla=0$, so that $\Omega_X^p(\Vv)$ forms
a differential complex $\Omega_X^\bullet(\Vv)$.
\begin{definition}\label{defn:DeRhamComplex}
Under the previous hypothesis, the complex $\Omega_X^\bullet(\Vv)$ is called
the \itblue{holomorphic De Rham complex} with values in $\Vv$.
\end{definition}
The following results
\ref{prop:canonical_connection}--\ref{prop:Poincare_lemma}
will be presented more generally in \ref{thm:Riemann–Hilbert correspondence}.
\begin{proposition}\label{prop:canonical_connection}
Let $V$ be a complex local system on a complex analytic manifold $X$ and
$\Vv=\Oo\otimes_\CC V$.
\begin{proplist}
\item There exists a canonical connection on $\Vv$, for which the horizontal
sections of $\Vv$ are local sections of the subsheaf $V$ of $\Vv$.
\item The canonical connection on $\Vv$ is integrable.
\item For $f$ (resp. $v$) a local section of $\Oo$ (resp. $V$), we have
\begin{equation}\label{eq:horizontal}
\nabla(fv)=\di f\otimes v.
\end{equation}
\end{proplist}
\end{proposition}
If $\nabla$ satisfies (i), then \cref{eq:horizontal} is just a special case
of \cref{eq:Leibniz}. Conversely, the right hand side of \cref{eq:horizontal}
is $\CC$-bilinear and extends uniquely to a $\CC$-linear homomorphism
$\nabla\colon\Vv\to\Omega_X^1(\Vv)$, which satisfies the definition of a
connection. The assumption (ii) is local on $X$, which permits to reduce to the
case $V=\underline{\CC}$. At the moment, $\Vv=\Oo$, $\nabla=\di$ and
$\nabla_{[X,Y]}=[\nabla_X,\nabla_Y]$ by definition of $[X,Y]$.
It is well known that
\begin{theorem}\label{thm:canonical_connection}
Let $X$ be a complex analytic manifold, the following functors
\begin{enumerate}[a)]
\item sending a complex local system $V$ to the vector bundle
$\Vv=\Oo\otimes_\CC V$ equipped with the canonical connection,
\item sending a holomorphic vector bundle $\Vv$ on $X$, equipped with an
integrable connection, to the subsheaf $V$ of horizontal sections of $\Vv$,
\end{enumerate}
form a pair of equivalences between
the category of complex local systems on $X$ and
the category of holomorphic vector bundles with integrable connections on $X$
(with morphisms the horizontal morphisms of vector bundles).
\end{theorem}
These equivalences are compatible with the formation of the tensor product, the
internal Hom and the dual. The unit complex local system $\underline{\CC}$
corresponds to the bundle $\Oo$, equipped with the connection such that
$\nabla f = \di f$.
One deduces from \cref{eq:Leibniz_higher} that
\begin{proposition}\label{prop:Isom_DeRhamComplex}
If $V$ is a complex local system on $X$, and if $\Vv=\Oo\otimes_\CC V$,
then the system of isomorphisms $\Omega_X^p\otimes_\CC V \cong
\Omega_X^p\otimes_\Oo\Oo\otimes_\CC V = \Omega_X\otimes_\Oo\Vv$ is an
isomorphism of complexes
\[
\Omega_X^\bullet\otimes_\CC V \Isom \Omega_X^\bullet(\Vv).
\]
\end{proposition}
From this, the \emph{holomorphic Poincar\'{e} lemma} results that
\begin{proposition}\label{prop:Poincare_lemma}
Under the hypothesis of \ref{prop:canonical_connection},
the complex $\Omega_X^\bullet(\Vv)$ is a resolution of the sheaf $V$.
\end{proposition}
\begin{para}
Variants.
\begin{subpara}
If $X$ is a differential manifold, for the $C^\infty$-connections on the
$C^\infty$-vector bundles, all the above results remains valid,
\emph{mutatis mutandis}.
\end{subpara}
\begin{subpara}
\Cref{thm:canonical_connection} essentially requires the non-singularity of
$X$; it is therefore of no interest to note that this hypothesis was not
used in an essential way before \ref{thm:canonical_connection}.
\end{subpara}
\begin{subpara}
The \cref{defn:holomorphic_connection} of a connection and
the \cref{defn:integrable_connections} of integrablity are
sufficiently formal to be transposed in the category of schemes, or in
related situations.
\end{subpara}
\end{para}
\begin{definition}\label{defn:connections_on_schemes}
\begin{paras}
\item Let $f\colon X\to S$ be a smooth morphism of schemes and $\Vv$ a
quasi-coherent sheaf on $X$. A \itblue{relative connection} on $\Vv$ is an
$f^{-1}\Oo_S$-linear morphism of sheaves
(called the \itblue{covariant derivative} defined by the connection)
\[
\nabla\colon\Vv\To\Omega_{X/S}^1(\Vv)
\]
satisfying following identity, for $f$ (resp. $v$) a local section of
$\Oo_X$ (resp. $\Vv$),
\[
\nabla(fv) = \di f\otimes v + f\nabla v.
\]
\item For $\Vv$ equipped with a relative connection, there exists a unique
system of $f^{-1}\Oo_S$-homomorphisms of sheaves
\[
\nabla^{(p)}\text{ or }\nabla\colon
\Omega_{X/S}^p(\Vv)\To\Omega_{X/S}^{p+1}(\Vv)
\]
satisfying the identity \cref{eq:Leibniz_OV} and such that
$\nabla^{(0)}=\nabla$.
\item The \itblue{curvature} of a connection is defined by
\[
\Rr=\nabla^{(1)}\circ\nabla^{(0)} \in
\CHom(\Vv,\Omega_{X/S}^2(\Vv))\cong\Omega_{X/S}^2(\CEnd{\Vv}).
\]
The curvature satisfies the Ricci identity \cref{eq:Ricci} and the Bianchi
identity \cref{eq:Bianchi}.
\item An \itblue{integrable connection} is a connection with zero curvature.
\item The \itblue{De Rham complex} defined by an integrable connection is
the complex $(\Omega_{X/S}^\bullet(\Vv),\nabla)$.
\end{paras}
\end{definition}
\begin{para}\label{defn:relative_connections}
Let $f\colon X\to S$ be a \itblue{smooth} morphism of complex analytic spaces,
that means, locally on $X$, it is isomorphic to the projection from
$D^n\times S$ to $S$, where $D^n$ is an open polydisc.
A \itblue{relative local system} on $X$ is an $f^{-1}\Oo_S$-module, locally
isomorphic to a pullback of a coherent analytic sheaf on $S$.
If $\Vv$ is a coherent analytic sheaf on $X$, a \itblue{relative connection}
on $\Vv$ is an $f^{-1}\Oo_S$-linear homomorphism
\[
\nabla\colon\Vv\To\Omega_{X/S}^1(\Vv)
\]
satisfying following identity, for $f$ (resp. $v$) a local section of
$\Oo_X$ (resp. $\Vv$),
\[
\nabla(fv) = \di f\otimes v + f\nabla v.
\]
A \itblue{(horizontal) morphism} between vector bundles with relative
connections is a morphism bewteen vector bundles commuting with $\nabla$.
We define as in \ref{defn:curvature} and \ref{defn:connections_on_schemes}
the \itblue{curvature} $\Rr\in\Omega_{X/S}^2(\CEnd(\Vv))$ of a relative
connection. A connection is said to be \itblue{integrable} if $\Rr=0$,
in which case we have the \itblue{relative De Rham complex}
$\Omega_{X/S}^\bullet(\Vv)$ with values in $\Vv$, defined as in
\ref{defn:DeRhamComplex} and \ref{defn:connections_on_schemes}.
\end{para}
The ``absolute'' statements
\ref{thm:canonical_connection}, \ref{prop:Isom_DeRhamComplex} and
\ref{prop:Poincare_lemma} have ``relative'' (i.e. ``with parameters'')
analogies.
\begin{theorem}\label{thm:Riemann–Hilbert correspondence}
Under the hypothesis of \ref{defn:relative_connections}, we have
\begin{paras}
\item For every relative local system $V$ on $X$, there exists a coherent
analytic sheaf $\Vv=\Oo_X\otimes_{f^{-1}\Oo_S}V$ with a canonical relative
connection, such that a local section $v$ of $\Vv$ is horizontal
($\nabla v=0$) if and only if $v$ is a section of $V$.
Moreover, this connection is integrable.
\item Given a relative local system $V$ on $X$,
the De Rham complex defined by $\Vv=\Oo_X\otimes_{f^{-1}\Oo_S}V$,
equipped with its canonical connection,
is a resolution of the sheaf $V$.
\item The following functors
\begin{enumerate}[a)]
\item sending a relative local system $V$ to the coherent analytic sheaf
$\Vv=\Oo_X\otimes_{f^{-1}\Oo_S}V$ equipped with the canonical connection,
\item sending a coherent analytic sheaf $\Vv$ on $X$, equipped with an
integrable relative connection, to the subsheaf of horizontal sections
of $\Vv$,
\end{enumerate}
form a pair of equivalences between
the category of relative local systems on $X$ and
the category of coherent analytic sheaves on $X$, equipped with integrable
relative connections.
\end{paras}
\end{theorem}
Proof of (i).
To verify that $\Vv$ is coherent, it suffices to do it locally,
for $V=f^{-1}V_0$, in which case $\Vv$ is the pullback,
in the sense of coherent analytical sheaves, of $V_0$.
The canonical relative connection necessarily verifies, for $f$ (resp. $v$)
a loal section of $\Oo$ (resp. $\Vv$),
\begin{equation}\label{eq:horizontal_relative}
\nabla(fv)=\di f\otimes v.
\end{equation}
The right hand side $\mathrm{I\!I}(f,v)$ is biadditive in $f$ and $v$, and
satisfies, for $g$ a local section of $f^{-1}\Oo_S$, the identity
\[
\mathrm{I\!I}(fg,v) = \mathrm{I\!I}(f,gv),
\]
(using that $\di g=0$ in $\Omega_{X/S}^1$).
We can deduce the existence and the uniqueness of a relative connection
$\nabla$ satisfying \cref{eq:horizontal_relative}. We finally have
\[
\nabla\nabla(fv)=\nabla(\di f\otimes v)=\di\di f\otimes v = 0;
\]
the canonical connection is thus integrable.
That the sections of $V$ are the only horizontal ones is a special case of (ii)
proving below.
\begin{subpara}
Let's first look at the particular case of (ii) where $S=D^n$,
$X=D^n\times D^m$, $f=\pr_2$ and where the relative local system $V$ is the
pullback of $\Oo_S$.
The complex of global sections
\[
0\To\Gamma(f^{-1}\Oo_S)\To\Gamma(\Oo_X)\markar{\di}
\Gamma(\Omega_{X/S}^1)\To\cdots
\]
is acyclic, because it admits the following homotopy operator.
\begin{enumerate}[a)]
\item $H\colon\Gamma(\Oo_X)\to\Gamma(f^{-1}\Oo_S)=\Gamma(S,\Oo_S)$ is the
pullback by zero section of $f$;
\item $H\colon\Gamma(\Omega_{X/S}^p)\to\Gamma(\Omega_{X/S}^{p-1})$ is given
as follows: since $H$ must be $\Gamma(f^{-1}\Oo_S)$-linear
and $\Omega_{X/S}^p$ has a basis $\{x^{\underline{n}}\di x_I :
\underline{n}\in\NN^m,I\subset[1,m],|I|=p\}$, it suffices to define
\[
H(x^{\underline{n}}\di x_I)=
\frac{1}{m}\sum_{i\in I}\frac{\sgn_I(i)}
{n_i+1}x^{\underline{n}+\epsilon_i}\di x_{I\setminus\{i\}},
\]
where $\sgn_I(i)$ is the signature of $i$ in the seuqence $I$,
and $\epsilon_i$ is the $i$-th member of the standard basis of $\NN^m$.
\end{enumerate}
This remains true if we replace $D^{m+n}$ by a smaller polycylinder.
Therefore the complex of sheaves
\[
0\To f^{-1}\Oo_S\To \Oo_X\markar{\di} \Omega_{X/S}^1\To\cdots
\]
is acyclic and thus $\Omega_{X/S}^\bullet$ is a resolution of $f^{-1}\Oo_S$.
\end{subpara}
\begin{subpara}
Proof of (ii).
The assertion (ii) is naturally local on $X$ and $S$. Denoted by $D$ the unit
open disk, so we can go back to the case where $S$ is a closed analytical
subset of the polycylinder $D^n$, where $X=D^m\times S$, with $f=\pr_2$, and
where $V$ is the pullback of a coherent analytic sheaf $V_0$ on $S$.
Applying the syzygy theorem, and shrinking $X$ and $S$, we can further assume
that the pushforward of $V_0$ on $D^n$, which also denoted by $V_0$, admits a
finite resolution $\Ll^\bullet$ by free coherent $\Oo_{D^n}$-modules.
To prove (ii), it is permissible to replace $V_0$ by its pushforward on $D^n$,
which will be done henceforth.
If $\Sigma_0$ is a short exact sequence of coherent $\Oo_S$-moduels
\[
\Sigma_0\colon
0\To V_0'\To V_0\To V_0''\To 0,
\]
let $V=f^{-1}V_0$ be the short exact sequence of relative local systems which
is the pullback of $\Sigma_0$ (the sequence $\Sigma$ is exact because $f^{-1}$
is an exact functor) and let $\Omega_{X/S}^\bullet(\Sigma)$ be the
corresponding exact sequence of relative De Rham complexes
\[
%\Omega_{X/S}^\bullet(\Sigma)\colon
0\To \Omega_{X/S}^\bullet\otimes_{f^{-1}\Oo_S}f^{-1}V_0'
\To \Omega_{X/S}^\bullet\otimes_{f^{-1}\Oo_S}f^{-1}V_0
\To \Omega_{X/S}^\bullet\otimes_{f^{-1}\Oo_S}f^{-1}V_0''\To 0.
\]
This sequence is exact because $\Omega_{X/S}^\bullet$ is flat over
$f^{-1}\Oo_S$, being locally free on $\Oo_X$ which is flat on $f^{-1}\Oo_S$.
The snake lemma applied to $\Omega_{X/S}^\bullet(\Sigma)$ shows that if the
assertion (ii) is true for two of $f^{-1}V_0'$, $f^{-1}V_0$ and $f^{-1}V_0''$,
then it is also true for the third. We can deduce by induction that if $V_0$
admits a finite resolution by modules satisfying (ii), then so does $V_0$.
This, applied to $V_0$ and $\Ll^\bullet$, complete the proof of (ii).
\end{subpara}
\begin{subpara}
It follows from (ii) that the composition of functors in (iii)
(in the order $b\circ a$) is canonically isomorphic to the identity;
in addition, if $V_1$ and $V_2$ are two relative local systems, and
$u\colon\Vv_1\to\Vv_2$ is a homomorphism inducing $0$ on $V_1$, then $u=0$
since $V_1$ generates $\Vv_1$; it follows that the functor a is fully faithful.
It remains to show that any vector bundle $\Vv$ equipped with a integrable
relative connection $\nabla$ locally comes from a relative local system.
\paragraph{Case 1.}
$S=D^n$, $X=D^{n+1}=D^n\times D$, $f=\pr_1$ and $\Vv$ is free.
Under these assumptions, if $v$ is any section of the pullback of $\Vv$ along
the zero section $s_0$ of $f$, there exists a unique horizontal section
$\widetilde{v}$ of $\Vv$ which coincides with $v$ on $s_0(S)$
(existence and uniqueness from a Cauchy problem with parameters).
If $(e_i)$ is a basis of $s_0^{\ast}\Vv$, then $\widetilde{e_i}$ form a
horizontal basis of $\Vv$, and $(\Vv,\nabla)$ is defined by the relative
local system $f^{-1}s_0^{\ast}\Vv=f^{-1}\Oo_S^k$.
\paragraph{Case 2.}
$S=D^n$, $X=D^{n+1}=D^n\times D$ and $f=\pr_1$.
Shrinking $X$ and $S$, we may assume that $\Vv$ admits a free presentation
\[
\Vv_1\markar{d}\Vv_0\markar{\epsilon}\Vv\To0
\]
Shrinking further, we reduce to the case where $\Vv_0$ and $\Vv_1$ admit
connections $\prescript{}{0}{\nabla}$ and $\prescript{}{1}{\nabla}$, such that
$\epsilon$ and $d$ are compatible with connections
(if $(e_i)$ is a basis of $\Vv_0$, $\prescript{}{0}{\nabla}$ is determined by
$\prescript{}{0}{\nabla}e_i$, and it suffices to choose
$\prescript{}{0}{\nabla}e_i$ such that
$\epsilon(\prescript{}{0}{\nabla}e_i) = \nabla(\epsilon(e_i))$;
similarly for $\prescript{}{1}{\nabla}$).
The connections $\prescript{}{0}{\nabla}$ and $\prescript{}{1}{\nabla}$ are
automatically integrable, since $f$ is of relative dimension $1$.
Thus there exist (case 1) relative local systems $V_0$ and $V_1$ such that
$(\Vv_i,\prescript{}{i}{\nabla})\cong\Oo_X\otimes_{f^{-1}\Oo_S}V_i$.
We thus have
\[
(\Vv,\nabla) \cong \Oo_X\otimes_{f^{-1}\Oo_S}(V_0/dV_1).
\]
\paragraph{Case 3.}
$f$ is of relative dimension $1$.
We may assume that $S$ is a closed analytical subset of the polycylinder $D^n$
and that $X=\times D$, $f=\pr_1$. The relative local systems (resp. relative
moduels with connection) on $X$ then identify with relative local systems