-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_partseg.py
222 lines (195 loc) · 8.43 KB
/
train_partseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
import dgl
from dgl.data.utils import download, get_download_dir
from functools import partial
import tqdm
import urllib
import os
import argparse
import time
from ShapeNet import ShapeNet
from pointnet_partseg import PointNetPartSeg, PartSegLoss
from pointnet2_partseg import PointNet2MSGPartSeg, PointNet2SSGPartSeg
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='pointnet')
parser.add_argument('--dataset-path', type=str, default='')
parser.add_argument('--load-model-path', type=str, default='')
parser.add_argument('--save-model-path', type=str, default='')
parser.add_argument('--num-epochs', type=int, default=250)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--tensorboard', action='store_true')
args = parser.parse_args()
num_workers = args.num_workers
batch_size = args.batch_size
def collate(samples):
graphs, cat = map(list, zip(*samples))
return dgl.batch(graphs), cat
CustomDataLoader = partial(
DataLoader,
num_workers=num_workers,
batch_size=batch_size,
shuffle=True,
drop_last=True)
def train(net, opt, scheduler, train_loader, dev):
category_list = sorted(list(shapenet.seg_classes.keys()))
eye_mat = np.eye(16)
net.train()
total_loss = 0
num_batches = 0
total_correct = 0
count = 0
start = time.time()
with tqdm.tqdm(train_loader, ascii=True) as tq:
for data, label, cat in tq:
num_examples = data.shape[0]
data = data.to(dev, dtype=torch.float)
label = label.to(dev, dtype=torch.long).view(-1)
opt.zero_grad()
cat_ind = [category_list.index(c) for c in cat]
# An one-hot encoding for the object category
cat_tensor = torch.tensor(eye_mat[cat_ind]).to(dev, dtype=torch.float).repeat(1, 2048)
cat_tensor = cat_tensor.view(num_examples, -1, 16).permute(0,2,1)
logits = net(data, cat_tensor)
loss = L(logits, label)
loss.backward()
opt.step()
_, preds = logits.max(1)
count += num_examples * 2048
loss = loss.item()
total_loss += loss
num_batches += 1
correct = (preds.view(-1) == label).sum().item()
total_correct += correct
AvgLoss = total_loss / num_batches
AvgAcc = total_correct / count
tq.set_postfix({
'AvgLoss': '%.5f' % AvgLoss,
'AvgAcc': '%.5f' % AvgAcc})
scheduler.step()
end = time.time()
return data, preds, AvgLoss, AvgAcc, end-start
def mIoU(preds, label, cat, cat_miou, seg_classes):
for i in range(preds.shape[0]):
shape_iou = 0
n = len(seg_classes[cat[i]])
for cls in seg_classes[cat[i]]:
pred_set = set(np.where(preds[i,:] == cls)[0])
label_set = set(np.where(label[i,:] == cls)[0])
union = len(pred_set.union(label_set))
inter = len(pred_set.intersection(label_set))
if union == 0:
shape_iou += 1
else:
shape_iou += inter / union
shape_iou /= n
cat_miou[cat[i]][0] += shape_iou
cat_miou[cat[i]][1] += 1
return cat_miou
def evaluate(net, test_loader, dev, per_cat_verbose=False):
category_list = sorted(list(shapenet.seg_classes.keys()))
eye_mat = np.eye(16)
net.eval()
cat_miou = {}
for k in shapenet.seg_classes.keys():
cat_miou[k] = [0, 0]
miou = 0
count = 0
per_cat_miou = 0
per_cat_count = 0
with torch.no_grad():
with tqdm.tqdm(test_loader, ascii=True) as tq:
for data, label, cat in tq:
num_examples = data.shape[0]
data = data.to(dev, dtype=torch.float)
label = label.to(dev, dtype=torch.long)
cat_ind = [category_list.index(c) for c in cat]
cat_tensor = torch.tensor(eye_mat[cat_ind]).to(dev, dtype=torch.float).repeat(1, 2048)
cat_tensor = cat_tensor.view(num_examples, -1, 16).permute(0,2,1)
logits = net(data, cat_tensor)
_, preds = logits.max(1)
cat_miou = mIoU(preds.cpu().numpy(),
label.view(num_examples, -1).cpu().numpy(),
cat, cat_miou, shapenet.seg_classes)
for _, v in cat_miou.items():
if v[1] > 0:
miou += v[0]
count += v[1]
per_cat_miou += v[0] / v[1]
per_cat_count += 1
tq.set_postfix({
'mIoU': '%.5f' % (miou / count),
'per Category mIoU': '%.5f' % (miou / count)})
if per_cat_verbose:
print("Per-Category mIoU:")
for k, v in cat_miou.items():
if v[1] > 0:
print("%s mIoU=%.5f" % (k, v[0] / v[1]))
else:
print("%s mIoU=%.5f" % (k, 1))
return miou / count, per_cat_miou / per_cat_count
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# dev = "cpu"
if args.model == 'pointnet':
net = PointNetPartSeg(50, 3, 2048)
elif args.model == 'pointnet2_ssg':
net = PointNet2SSGPartSeg(50, batch_size, input_dims=6)
elif args.model == 'pointnet2_msg':
net = PointNet2MSGPartSeg(50, batch_size, input_dims=6)
net = net.to(dev)
if args.load_model_path:
net.load_state_dict(torch.load(args.load_model_path, map_location=dev))
opt = optim.Adam(net.parameters(), lr=0.001, weight_decay=1e-4)
scheduler = optim.lr_scheduler.StepLR(opt, step_size=20, gamma=0.5)
L = PartSegLoss()
shapenet = ShapeNet(2048, normal_channel=False)
train_loader = CustomDataLoader(shapenet.trainval())
test_loader = CustomDataLoader(shapenet.test())
# Tensorboard
if args.tensorboard:
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
writer = SummaryWriter()
# Select 50 distinct colors for different parts
color_map = torch.tensor([
[47, 79, 79],[139, 69, 19],[112, 128, 144],[85, 107, 47],[139, 0, 0],[128, 128, 0],[72, 61, 139],[0, 128, 0],[188, 143, 143],[60, 179, 113],
[205, 133, 63],[0, 139, 139],[70, 130, 180],[205, 92, 92],[154, 205, 50],[0, 0, 139],[50, 205, 50],[250, 250, 250],[218, 165, 32],[139, 0, 139],
[10, 10, 10],[176, 48, 96],[72, 209, 204],[153, 50, 204],[255, 69, 0],[255, 145, 0],[0, 0, 205],[255, 255, 0],[0, 255, 0],[233, 150, 122],
[220, 20, 60],[0, 191, 255],[160, 32, 240],[192,192,192],[173, 255, 47],[218, 112, 214],[216, 191, 216],[255, 127, 80],[255, 0, 255],[100, 149, 237],
[128,128,128],[221, 160, 221],[144, 238, 144],[123, 104, 238],[255, 160, 122],[175, 238, 238],[238, 130, 238],[127, 255, 212],[255, 218, 185],[255, 105, 180],
])
# paint each point according to its pred
def paint(batched_points):
B, N = batched_points.shape
colored = color_map[batched_points].squeeze(2)
return colored
best_test_miou = 0
best_test_per_cat_miou = 0
for epoch in range(args.num_epochs):
data, preds, AvgLoss, AvgAcc, training_time = train(net, opt, scheduler, train_loader, dev)
if (epoch + 1) % 5 == 0:
print('Epoch #%d Testing' % epoch)
test_miou, test_per_cat_miou = evaluate(net, test_loader, dev, (epoch + 1) % 5 ==0)
if test_miou > best_test_miou:
best_test_miou = test_miou
best_test_per_cat_miou = test_per_cat_miou
if args.save_model_path:
torch.save(net.state_dict(), args.save_model_path)
print('Current test mIoU: %.5f (best: %.5f), per-Category mIoU: %.5f (best: %.5f)' % (
test_miou, best_test_miou, test_per_cat_miou, best_test_per_cat_miou))
# Tensorboard
if args.tensorboard:
colored = paint(preds)
writer.add_mesh('data', vertices=data, colors=colored, global_step=epoch)
writer.add_scalar('training time for one epoch', training_time, global_step=epoch)
writer.add_scalar('AvgLoss', AvgLoss, global_step=epoch)
writer.add_scalar('AvgAcc', AvgAcc, global_step=epoch)
if (epoch + 1) % 5 == 0:
writer.add_scalar('test mIoU', test_miou, global_step=epoch)
writer.add_scalar('best test mIoU', best_test_miou, global_step=epoch)