-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
73 lines (59 loc) · 2.32 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch import KNNGraph, EdgeConv
class Model(nn.Module):
def __init__(self, k, feature_dims, emb_dims, output_classes, input_dims=3,
dropout_prob=0.5):
super(Model, self).__init__()
self.nng = KNNGraph(k)
self.conv = nn.ModuleList()
self.num_layers = len(feature_dims)
for i in range(self.num_layers):
self.conv.append(EdgeConv(
feature_dims[i - 1] if i > 0 else input_dims,
feature_dims[i],
batch_norm=True))
self.proj = nn.Linear(sum(feature_dims), emb_dims[0])
self.embs = nn.ModuleList()
self.bn_embs = nn.ModuleList()
self.dropouts = nn.ModuleList()
self.num_embs = len(emb_dims) - 1
for i in range(1, self.num_embs + 1):
self.embs.append(nn.Linear(
# * 2 because of concatenation of max- and mean-pooling
emb_dims[i - 1] if i > 1 else (emb_dims[i - 1] * 2),
emb_dims[i]))
self.bn_embs.append(nn.BatchNorm1d(emb_dims[i]))
self.dropouts.append(nn.Dropout(dropout_prob))
self.proj_output = nn.Linear(emb_dims[-1], output_classes)
def forward(self, x):
hs = []
batch_size, n_points, x_dims = x.shape
h = x
for i in range(self.num_layers):
g = self.nng(h).to(h.device)
h = h.view(batch_size * n_points, -1)
h = self.conv[i](g, h)
h = F.leaky_relu(h, 0.2)
h = h.view(batch_size, n_points, -1)
hs.append(h)
h = torch.cat(hs, 2)
h = self.proj(h)
h_max, _ = torch.max(h, 1)
h_avg = torch.mean(h, 1)
h = torch.cat([h_max, h_avg], 1)
for i in range(self.num_embs):
h = self.embs[i](h)
h = self.bn_embs[i](h)
h = F.leaky_relu(h, 0.2)
h = self.dropouts[i](h)
h = self.proj_output(h)
return h
def compute_loss(logits, y, eps=0.2):
num_classes = logits.shape[1]
one_hot = torch.zeros_like(logits).scatter_(1, y.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (num_classes - 1)
log_prob = F.log_softmax(logits, 1)
loss = -(one_hot * log_prob).sum(1).mean()
return loss