-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
137 lines (107 loc) · 4.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
""" The main file to train a JKNet model using a full graph """
import argparse
import copy
import torch
import torch.optim as optim
import torch.nn as nn
import numpy as np
from dgl.data import CoraGraphDataset, CiteseerGraphDataset
from tqdm import trange
from sklearn.model_selection import train_test_split
from model import JKNet
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
# Load from DGL dataset
if args.dataset == 'Cora':
dataset = CoraGraphDataset()
elif args.dataset == 'Citeseer':
dataset = CiteseerGraphDataset()
else:
raise ValueError('Dataset {} is invalid.'.format(args.dataset))
graph = dataset[0]
# check cuda
device = f'cuda:{args.gpu}' if args.gpu >= 0 and torch.cuda.is_available() else 'cpu'
# retrieve the number of classes
n_classes = dataset.num_classes
# retrieve labels of ground truth
labels = graph.ndata.pop('label').to(device).long()
# Extract node features
feats = graph.ndata.pop('feat').to(device)
n_features = feats.shape[-1]
# create masks for train / validation / test
# train : val : test = 6 : 2 : 2
n_nodes = graph.num_nodes()
idx = torch.arange(n_nodes).to(device)
train_idx, test_idx = train_test_split(idx, test_size=0.2)
train_idx, val_idx = train_test_split(train_idx, test_size=0.25)
graph = graph.to(device)
# Step 2: Create model =================================================================== #
model = JKNet(in_dim=n_features,
hid_dim=args.hid_dim,
out_dim=n_classes,
num_layers=args.num_layers,
mode=args.mode,
dropout=args.dropout).to(device)
best_model = copy.deepcopy(model)
# Step 3: Create training components ===================================================== #
loss_fn = nn.CrossEntropyLoss()
opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.lamb)
# Step 4: training epochs =============================================================== #
acc = 0
epochs = trange(args.epochs, desc='Accuracy & Loss')
for _ in epochs:
# Training using a full graph
model.train()
logits = model(graph, feats)
# compute loss
train_loss = loss_fn(logits[train_idx], labels[train_idx])
train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx)
# backward
opt.zero_grad()
train_loss.backward()
opt.step()
# Validation using a full graph
model.eval()
with torch.no_grad():
valid_loss = loss_fn(logits[val_idx], labels[val_idx])
valid_acc = torch.sum(logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx)
# Print out performance
epochs.set_description('Train Acc {:.4f} | Train Loss {:.4f} | Val Acc {:.4f} | Val loss {:.4f}'.format(
train_acc, train_loss.item(), valid_acc, valid_loss.item()))
if valid_acc > acc:
acc = valid_acc
best_model = copy.deepcopy(model)
best_model.eval()
logits = best_model(graph, feats)
test_acc = torch.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx)
print("Test Acc {:.4f}".format(test_acc))
return test_acc
if __name__ == "__main__":
"""
JKNet Hyperparameters
"""
parser = argparse.ArgumentParser(description='JKNet')
# data source params
parser.add_argument('--dataset', type=str, default='Cora', help='Name of dataset.')
# cuda params
parser.add_argument('--gpu', type=int, default=-1, help='GPU index. Default: -1, using CPU.')
# training params
parser.add_argument('--run', type=int, default=10, help='Running times.')
parser.add_argument('--epochs', type=int, default=500, help='Training epochs.')
parser.add_argument('--lr', type=float, default=0.005, help='Learning rate.')
parser.add_argument('--lamb', type=float, default=0.0005, help='L2 reg.')
# model params
parser.add_argument("--hid-dim", type=int, default=32, help='Hidden layer dimensionalities.')
parser.add_argument("--num-layers", type=int, default=5, help='Number of GCN layers.')
parser.add_argument("--mode", type=str, default='cat', help="Type of aggregation.", choices=['cat', 'max', 'lstm'])
parser.add_argument("--dropout", type=float, default=0.5, help='Dropout applied at all layers.')
args = parser.parse_args()
print(args)
acc_lists = []
for _ in range(args.run):
acc_lists.append(main(args))
mean = np.around(np.mean(acc_lists, axis=0), decimals=3)
std = np.around(np.std(acc_lists, axis=0), decimals=3)
print('total acc: ', acc_lists)
print('mean', mean)
print('std', std)