-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
130 lines (110 loc) · 4.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
import math
def glorot(tensor):
if tensor is not None:
stdv = math.sqrt(6.0 / (tensor.size(-2) + tensor.size(-1)))
tensor.data.uniform_(-stdv, stdv)
def zeros(tensor):
if tensor is not None:
tensor.data.fill_(0)
class ARMAConv(nn.Module):
def __init__(self,
in_dim,
out_dim,
num_stacks,
num_layers,
activation=None,
dropout=0.0,
bias=True):
super(ARMAConv, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.K = num_stacks
self.T = num_layers
self.activation = activation
self.dropout = nn.Dropout(p=dropout)
# init weight
self.w_0 = nn.ModuleDict({
str(k): nn.Linear(in_dim, out_dim, bias=False) for k in range(self.K)
})
# deeper weight
self.w = nn.ModuleDict({
str(k): nn.Linear(out_dim, out_dim, bias=False) for k in range(self.K)
})
# v
self.v = nn.ModuleDict({
str(k): nn.Linear(in_dim, out_dim, bias=False) for k in range(self.K)
})
# bias
if bias:
self.bias = nn.Parameter(torch.Tensor(self.K, self.T, 1, self.out_dim))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
for k in range(self.K):
glorot(self.w_0[str(k)].weight)
glorot(self.w[str(k)].weight)
glorot(self.v[str(k)].weight)
zeros(self.bias)
def forward(self, g, feats):
with g.local_scope():
init_feats = feats
# assume that the graphs are undirected and graph.in_degrees() is the same as graph.out_degrees()
degs = g.in_degrees().float().clamp(min=1)
norm = torch.pow(degs, -0.5).to(feats.device).unsqueeze(1)
output = None
for k in range(self.K):
feats = init_feats
for t in range(self.T):
feats = feats * norm
g.ndata['h'] = feats
g.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
feats = g.ndata.pop('h')
feats = feats * norm
if t == 0:
feats = self.w_0[str(k)](feats)
else:
feats = self.w[str(k)](feats)
feats += self.dropout(self.v[str(k)](init_feats))
feats += self.v[str(k)](self.dropout(init_feats))
if self.bias is not None:
feats += self.bias[k][t]
if self.activation is not None:
feats = self.activation(feats)
if output is None:
output = feats
else:
output += feats
return output / self.K
class ARMA4NC(nn.Module):
def __init__(self,
in_dim,
hid_dim,
out_dim,
num_stacks,
num_layers,
activation=None,
dropout=0.0):
super(ARMA4NC, self).__init__()
self.conv1 = ARMAConv(in_dim=in_dim,
out_dim=hid_dim,
num_stacks=num_stacks,
num_layers=num_layers,
activation=activation,
dropout=dropout)
self.conv2 = ARMAConv(in_dim=hid_dim,
out_dim=out_dim,
num_stacks=num_stacks,
num_layers=num_layers,
activation=activation,
dropout=dropout)
self.dropout = nn.Dropout(p=dropout)
def forward(self, g, feats):
feats = F.relu(self.conv1(g, feats))
feats = self.dropout(feats)
feats = self.conv2(g, feats)
return feats