forked from OpenBMB/MiniCPM-V
-
Notifications
You must be signed in to change notification settings - Fork 0
/
web_demo.py
260 lines (229 loc) · 8.14 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
# encoding: utf-8
import gradio as gr
from PIL import Image
import traceback
import re
import torch
import argparse
from transformers import AutoModel, AutoTokenizer
# README, How to run demo on different devices
# For Nvidia GPUs support BF16 (like A100, H100, RTX3090)
# python web_demo.py --device cuda --dtype bf16
# For Nvidia GPUs do NOT support BF16 (like V100, T4, RTX2080)
# python web_demo.py --device cuda --dtype fp16
# For Mac with MPS (Apple silicon or AMD GPUs).
# PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo.py --device mps --dtype fp16
# Argparser
parser = argparse.ArgumentParser(description='demo')
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
parser.add_argument('--dtype', type=str, default='bf16', help='bf16 or fp16')
args = parser.parse_args()
device = args.device
assert device in ['cuda', 'mps']
if args.dtype == 'bf16':
dtype = torch.bfloat16
else:
dtype = torch.float16
# Load model
model_path = 'openbmb/MiniCPM-V-2'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to(device=device, dtype=dtype)
model.eval()
ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-V 2.0'
form_radio = {
'choices': ['Beam Search', 'Sampling'],
#'value': 'Beam Search',
'value': 'Sampling',
'interactive': True,
'label': 'Decode Type'
}
# Beam Form
num_beams_slider = {
'minimum': 0,
'maximum': 5,
'value': 3,
'step': 1,
'interactive': True,
'label': 'Num Beams'
}
repetition_penalty_slider = {
'minimum': 0,
'maximum': 3,
'value': 1.2,
'step': 0.01,
'interactive': True,
'label': 'Repetition Penalty'
}
repetition_penalty_slider2 = {
'minimum': 0,
'maximum': 3,
'value': 1.05,
'step': 0.01,
'interactive': True,
'label': 'Repetition Penalty'
}
max_new_tokens_slider = {
'minimum': 1,
'maximum': 4096,
'value': 1024,
'step': 1,
'interactive': True,
'label': 'Max New Tokens'
}
top_p_slider = {
'minimum': 0,
'maximum': 1,
'value': 0.8,
'step': 0.05,
'interactive': True,
'label': 'Top P'
}
top_k_slider = {
'minimum': 0,
'maximum': 200,
'value': 100,
'step': 1,
'interactive': True,
'label': 'Top K'
}
temperature_slider = {
'minimum': 0,
'maximum': 2,
'value': 0.7,
'step': 0.05,
'interactive': True,
'label': 'Temperature'
}
def create_component(params, comp='Slider'):
if comp == 'Slider':
return gr.Slider(
minimum=params['minimum'],
maximum=params['maximum'],
value=params['value'],
step=params['step'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Radio':
return gr.Radio(
choices=params['choices'],
value=params['value'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Button':
return gr.Button(
value=params['value'],
interactive=True
)
def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
default_params = {"num_beams":3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
if params is None:
params = default_params
if img is None:
return -1, "Error, invalid image, please upload a new image", None, None
try:
image = img.convert('RGB')
answer, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
**params
)
res = re.sub(r'(<box>.*</box>)', '', answer)
res = res.replace('<ref>', '')
res = res.replace('</ref>', '')
res = res.replace('<box>', '')
answer = res.replace('</box>', '')
return -1, answer, None, None
except Exception as err:
print(err)
traceback.print_exc()
return -1, ERROR_MSG, None, None
def upload_img(image, _chatbot, _app_session):
image = Image.fromarray(image)
_app_session['sts']=None
_app_session['ctx']=[]
_app_session['img']=image
_chatbot.append(('', 'Image uploaded successfully, you can talk to me now'))
return _chatbot, _app_session
def respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
if _app_cfg.get('ctx', None) is None:
_chat_bot.append((_question, 'Please upload an image to start'))
return '', _chat_bot, _app_cfg
_context = _app_cfg['ctx'].copy()
if _context:
_context.append({"role": "user", "content": _question})
else:
_context = [{"role": "user", "content": _question}]
print('<User>:', _question)
if params_form == 'Beam Search':
params = {
'sampling': False,
'num_beams': num_beams,
'repetition_penalty': repetition_penalty,
"max_new_tokens": 896
}
else:
params = {
'sampling': True,
'top_p': top_p,
'top_k': top_k,
'temperature': temperature,
'repetition_penalty': repetition_penalty_2,
"max_new_tokens": 896
}
code, _answer, _, sts = chat(_app_cfg['img'], _context, None, params)
print('<Assistant>:', _answer)
_context.append({"role": "assistant", "content": _answer})
_chat_bot.append((_question, _answer))
if code == 0:
_app_cfg['ctx']=_context
_app_cfg['sts']=sts
return '', _chat_bot, _app_cfg
def regenerate_button_clicked(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
if len(_chat_bot) <= 1:
_chat_bot.append(('Regenerate', 'No question for regeneration.'))
return '', _chat_bot, _app_cfg
elif _chat_bot[-1][0] == 'Regenerate':
return '', _chat_bot, _app_cfg
else:
_question = _chat_bot[-1][0]
_chat_bot = _chat_bot[:-1]
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
return respond(_question, _chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1, min_width=300):
params_form = create_component(form_radio, comp='Radio')
with gr.Accordion("Beam Search") as beams_according:
num_beams = create_component(num_beams_slider)
repetition_penalty = create_component(repetition_penalty_slider)
with gr.Accordion("Sampling") as sampling_according:
top_p = create_component(top_p_slider)
top_k = create_component(top_k_slider)
temperature = create_component(temperature_slider)
repetition_penalty_2 = create_component(repetition_penalty_slider2)
regenerate = create_component({'value': 'Regenerate'}, comp='Button')
with gr.Column(scale=3, min_width=500):
app_session = gr.State({'sts':None,'ctx':None,'img':None})
bt_pic = gr.Image(label="Upload an image to start")
chat_bot = gr.Chatbot(label=f"Chat with {model_name}")
txt_message = gr.Textbox(label="Input text")
regenerate.click(
regenerate_button_clicked,
[txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
[txt_message, chat_bot, app_session]
)
txt_message.submit(
respond,
[txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
[txt_message, chat_bot, app_session]
)
bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic,chat_bot,app_session], outputs=[chat_bot,app_session])
# launch
demo.launch(share=False, debug=True, show_api=False, server_port=8080, server_name="0.0.0.0")